A comprehensive guide to antenna design, manufacturing processes, antenna integration, and packaging
Antenna-in-Package Technology and Applications contains an introduction to the history of AiP technology. It explores antennas and packages, thermal analysis and design, as well as measurement setups and methods for AiP technology. The authors - well-known experts on the topic - explain why microstrip patch antennas are the most popular and describe the myriad constraints of packaging, such as electrical performance, thermo-mechanical reliability, compactness, manufacturability, and cost. The book includes information on how the choice of interconnects is governed by JEDEC for automatic assembly and describes low-temperature co-fired ceramic, high-density interconnects, fan-out wafer level packaging-based AiP, and 3D-printing-based AiP.
The book includes a detailed discussion of the surface laminar circuit-based AiP designs for large-scale mm-wave phased arrays for 94-GHz imagers and 28-GHz 5G New Radios. Additionally, the book includes information on 3D AiP for sensor nodes, near-field wireless power transfer, and IoT applications. This important book:
• Includes a brief history of antenna-in-package technology
• Describes package structures widely used in AiP, such as ball grid array (BGA) and quad flat no-leads (QFN)
• Explores the concepts, materials and processes, designs, and verifications with special consideration for excellent electrical, mechanical, and thermal performance
Written for students in electrical engineering, professors, researchers, and RF engineers, Antenna-in-Package Technology and Applications offers a guide to material selection for antennas and packages, antenna design with manufacturing processes and packaging constraints, antenna integration, and packaging.
Table of Contents
List of Contributors xiii
Preface xv
Abbreviations xix
1 Introduction 1
Yueping Zhang
1.1 Background 1
1.2 The Idea 3
1.3 Exploring the Idea 4
1.3.1 Bluetooth Radio and Other RF Applications 4
1.3.2 60-GHz Radio and Other Millimeter-wave Applications 7
1.4 Developing the Idea into a Mainstream Technology 8
1.5 Concluding Remarks 11
Acknowledgements 12
References 12
2 Antennas 17
Yueping Zhang
2.1 Introduction 17
2.2 Basic Antennas 17
2.2.1 Dipole 17
2.2.2 Monopole 18
2.2.3 Loop 18
2.2.4 Slot 19
2.3 Unusual Antennas 19
2.3.1 Laminated Resonator Antenna 19
2.3.2 Dish-like Reflector Antenna 19
2.3.3 Slab Waveguide Antenna 20
2.3.4 Differentially Fed Aperture Antenna 20
2.3.5 Step-profiled Corrugated Horn Antenna 21
2.4 Microstrip Patch Antennas 21
2.4.1 Basic Patch Antennas 21
2.4.2 Stacked Patch Antennas 25
2.4.3 Patch Antenna Arrays 27
2.5 Microstrip Grid Array Antennas 30
2.5.1 Basic Configuration 31
2.5.2 Principle of Operation 31
2.5.3 Design Formulas with an Example 32
2.6 Yagi-Uda Antennas 37
2.6.1 Horizontal Yagi-Uda Antenna 38
2.6.2 Vertical Yagi-Uda Antenna 38
2.6.3 Yagi-Uda Antenna Array 39
2.7 Magneto-Electric Dipole Antennas 41
2.7.1 Single-polarized Microstrip Magneto-electric Dipole Antenna 42
2.7.2 Dual-polarized Microstrip Magneto-electric Dipole Antenna 42
2.7.3 Simulated and Measured Results 45
2.8 Performance Improvement Techniques 45
2.8.1 Single-layer Spiral AMC 49
2.8.2 Design Guidelines 49
2.8.3 A Design Example 50
2.9 Summary 50
Acknowledgements 50
References 51
3 Packaging Technologies 57
Ning Ye
3.1 Introduction 57
3.2 Major Packaging Milestones 57
3.3 Packaging Taxonomy 58
3.3.1 Routing Layer in Packages 58
3.3.1.1 Lead Frame 58
3.3.1.2 Laminate 59
3.3.1.3 Redistribution Layer 61
3.3.2 Die to Routing Layer Interconnect 62
3.3.2.1 Wire Bonds 62
3.3.2.2 Flip Chips 63
3.4 Packaging Process for Several Major Packages 64
3.4.1 Wire Bond Plastic Ball Grid Array 64
3.4.1.1 Die Preparation 66
3.4.1.2 Die Attach 66
3.4.1.3 Wire Bonding 67
3.4.1.4 Molding 69
3.4.1.5 Ball Mounting 71
3.4.1.6 Package Singulation 71
3.4.2 Wire Bond Quad Flat No-Lead Packages 71
3.4.3 Flip-chip Plastic Ball Grid Arrays 73
3.4.3.1 Flip-chip Bumping 73
3.4.3.2 Flip-chip Attach 75
3.4.3.3 Underfill 76
3.4.4 Wafer Level Packaging 77
3.4.5 Fan Out Wafer Level Packaging 78
3.5 Summary and Emerging Trends 79
References 84
4 Electrical, Mechanical, and Thermal Co-Design 89
Xiaoxiong Gu and Pritish Parida
4.1 Introduction 89
4.2 Electrical, Warpage, and Thermomechanical Analysis for AiP Co-design 92
4.2.1 28-GHz Phased Array Antenna Module Overview 92
4.2.2 Thermomechanical Test Vehicle Overview 94
4.2.3 Antenna Prototyping and Interconnect Characterization 96
4.2.4 Warpage Analysis and Test 96
4.2.5 Thermal Simulation and Characterization 98
4.3 Thermal Management Considerations for Next-generation Heterogeneous Integrated Systems 102
4.3.1 AiP Cooling Options Under Different Power Dissipation Conditions 102
4.3.2 Thermal Management for Heterogeneous Integrated High-power Systems 108
Acknowledgment 110
References 110
5 Antenna-in-Package Measurements 115
A.C.F. Reniers, U. Johannsen, and A.B. Smolders
5.1 General Introduction and Antenna Parameters 115
5.1.1 Antenna Measurement Concepts 115
5.1.2 Field Regions 116
5.1.3 Radiation Characteristics 118
5.1.4 Polarization Properties of Antennas 120
5.2 Impedance Measurements 123
5.2.1 Circuit Representation of Antennas 123
5.3 Anechoic Measurement Facility for Characterizing AiPs 128
5.3.1 Design of the mmWave Anechoic Chamber 128
5.3.2 Defining Antenna Measurement Uncertainty 129
5.3.3 Uncertainty in the mmWave Antenna Test Facility 132
5.3.4 Case Study AiP: Characterization of a mmWave Circularly Polarized Rod Antenna 132
5.4 Over-the-air System-level Testing 139
5.5 Summary and Conclusions 142
References 142
6 Antenna-in-package Designs in Multilayered Low-temperature Co-fired Ceramic Platforms 147
Atif Shamim and Haoran Zhang
6.1 Introduction 147
6.2 LTCC Technology 148
6.2.1 Introduction 149
6.2.2 LTCC Fabrication Process 150
6.2.3 LTCC Material Suppliers and Manufacturing Foundries 151
6.3 LTCC-based AiP 153
6.3.1 SIW AiP 153
6.3.2 mmWave AiP 156
6.3.2.1 5G AiP 157
6.3.2.2 WPAN (60-GHz) AiP 158
6.3.2.3 Automotive Radar (79-GHz) AiP 159
6.3.2.4 Imaging and Radar (94-GHz) AiP 160
6.3.2.5 Sub-THz (Above-100-GHz) AiP 161
6.3.3 Active Antenna in LTCC 162
6.3.4 Gain Enhancement Techniques in LTCC 164
6.3.5 Ferrite LTCC-based Antenna 167
6.4 Challenges and Upcoming Trends in LTCC AiP 171
References 172
7 Antenna Integration in Packaging Technology operating from 60 GHz up to 300 GHz (HDI-based AiP) 179
Frédéric Gianesello, Diane Titz, and Cyril Luxey
7.1 Organic Packaging Technology for AiP 179
7.1.1 Organic Package Overview 179
7.1.2 Buildup Architecture 180
7.1.3 Industrial Material 182
7.1.4 HDI Design Rules 183
7.1.5 Assembly Constraints and Body Size 185
7.2 Integration of AiP in Organic Packaging Technology Below 100 GHz 187
7.2.1 Integration Strategy of the Antenna 187
7.2.2 60-GHz AiP Modules 189
7.2.3 94-GHz AiP Module 197
7.3 Integration of AiP in Organic Packaging Technology in the 120-140-GHz Band 203
7.3.1 120-140-GHz AiP Module 203
7.3.2 Link Demonstration Using a BiCMOS Chip with the 120-GHz BGA Module 208
7.4 Integration of AiP in Organic Packaging Technology Beyond 200 GHz 210
7.5 Conclusion and Perspectives 214
References 215
8 Antenna Integration in eWLB Package 219
Maciej Wojnowski and Klaus Pressel
8.1 Introduction 219
8.2 The Embedded Wafer Level BGA Package 220
8.2.1 Process Flow for the eWLB 222
8.2.2 Vertical Interconnections in the eWLB 223
8.2.3 Embedded Z-Line Technology 225
8.3 Toolbox Elements for AiP in eWLB 227
8.3.1 Transmission Lines 227
8.3.2 Passive Components and Distributed RF Circuits 231
8.3.3 RF Transition to PCB 238
8.3.4 Vertical RF Transitions 239
8.4 Antenna Integration in eWLB 243
8.4.1 Single Antenna 244
8.4.2 Antenna Array 245
8.4.3 3D Antenna and Antenna Arrays 246
8.5 Application Examples 249
8.5.1 Two-channel 60-GHz Transceiver Module 249
8.5.2 Four-channel 77-GHz Transceiver Module 253
8.5.3 Six-channel 60-GHz Transceiver Module 258
8.6 Conclusion 263
Acknowledgement 263
References 264
9 Additive Manufacturing AiP Designs and Applications 267
Tong-Hong Lin, Ryan A. Bahr, and Manos M. Tentzeris
9.1 Introduction 267
9.2 Additive Manufacturing Technologies 269
9.2.1 Inkjet Printing 269
9.2.2 FDM 3D Printing 269
9.2.3 SLA 3D Printing 270
9.3 Material Characterization 272
9.3.1 Resonator-based Material Characterization 273
9.3.2 Transmissive-based Material Characterization 274
9.4 Recent Advances in AM for Packaging 275
9.4.1 Interconnects 276
9.4.2 AiP 277
9.5 Fabrication Process 278
9.5.1 3D Printing Process 278
9.5.2 Inkjet Printing Process 280
9.5.3 AiP Fabrication Process 281
9.6 AiP and SoP using AM Technologies 282
9.6.1 AiP Design 282
9.6.2 SoP Design 284
9.7 Summary and Prospect 287
References 289
10 SLC-based AiP for Phased Array Applications 293
Duixian Liu and Xiaoxiong Gu
10.1 Introduction 293
10.2 SLC Technology 296
10.3 AiP for 5G Base Station Applications 297
10.3.1 Package and Antenna Structure 298
10.3.2 AiP Design Considerations 299
10.3.2.1 Surface Wave Effects 299
10.3.2.2 Vertical Transitions 300
10.3.3 Aperture-coupled Patch Antenna Design 302
10.3.4 28-GHz Aperture-coupled Cavity-backed Patch Array Design 307
10.3.5 Passive Antenna Element Characterization 309
10.3.6 Active Module Characterization of 64-element Beams 310
10.3.7 28-GHz AiP Phased-array Conclusion 314
10.4 94-GHz Scalable AiP Phased-array Applications 315
10.4.1 Scalable Phased-array Concept 317
10.4.2 94-GHz Antenna Prototype Designs 320
10.4.3 94-GHz Antenna Prototype Evaluation 322
10.4.4 94-GHz AiP Array Design 322
10.4.5 Package Modeling and Simulation 326
10.4.6 Package Assembly and Test 328
10.4.7 Antenna Pattern and Radiated Power Measurement 330
Acknowledgment 333
References 334
11 3D AiP for Power Transfer, Sensor Nodes, and IoT Applications 341
Amin Enayati, Karim Mohammadpour-Aghdam, and Farbod Molaee-Ghaleh
11.1 Introduction 341
11.2 Small Antenna Design and Miniaturization Techniques 342
11.2.1 Physical Bounds on the Radiation Q-factor for Antenna Structures 342
11.2.1.1 Lower Bounds on Antenna Enclosed in a Sphere: Chu, McLean, and Thal Limits 342
11.2.1.2 Lower Bounds on Antenna Enclosed in an Arbitrary Structure: Gustafsson-Yaghjian Limit 343
11.2.2 Figure of Merit for Antenna Miniaturization 345
11.2.2.1 Relation between Q-factor and Antenna Input Impedance 345
11.2.2.2 Antenna Efficiency Effect on the Radiation Q 346
11.2.2.3 Cross-polarization Effect on Antenna Radiation Q 346
11.2.2.4 Figure of Merit Definition 346
11.2.3 Antenna Miniaturization Techniques 346
11.2.3.1 Miniaturization through Geometrical Shaping of the Antenna 347
11.2.3.2 Miniaturization through Material Loading 349
11.3 Multi-mode Capability: A Way to Achieve Wideband Antennas 354
11.4 Miniaturized Antenna Solutions for Power Transfer and Energy Harvesting Applications 355
11.4.1 Integrated Antenna Design Challenges for WPT and Scavenging Systems 356
11.4.1.1 Conjugate Impedance Matching 356
11.4.1.2 Antenna Structure Selection 357
11.4.2 Small Antenna Structure that can be Optimized for Arbitrary Input Impedance 357
11.4.2.1 Basic Antenna Structure 357
11.4.2.2 Antenna Size Reduction by Folding 358
11.4.2.3 Final Antenna Structure and Parameter Analysis 358
11.4.3 Example of an AiP Solution for On-chip Scavenging/UWB Applications 360
11.5 AiP Solutions in Low-cost PCB Technology 364
11.5.1 Introduction to Wireless Sensor Networks and IoT 364
11.5.1.1 Examples of Antennas for IoT Devices 365
11.5.2 3D System-in-Package Solutions for Microwave Wireless Devices 365
11.5.3 E-CUBE: A 3D SiP Solution 368
11.5.3.1 Multilayer Flex-rigid PCB for Antenna Element Design 369
11.5.3.2 Modular Design of the Antenna Array and Power Distribution Network 371
11.5.3.3 Construction and Measurement Results 374
References 377
Index 385