A comprehensive guide to cable materials, markets, and products
The Global Cable Industry presents a comprehensive overview of the most recent developments in automotive cables, nuclear power station cables, undersea cables, coaxial cables, optical wires, medium- and high-voltage cables. With contributions from noted researchers and developers in the field, the book includes information on material developments for polymers, crosslinked elastomers and flame retardant non-halogen cable compounds.
The contributors provide information on technologies to crosslink polymers, an overview of foam polymers, and field experiences of the new cable fire test within the Construction Product Regulation framework. In addition, this comprehensive resource contains the most relevant economic questions related to the cable industry that highlights materials, market segments, and countries. This important book:
- Includes contributions from researchers and developers of key companies in the cable industry
- Presents information on the most recent developments in the field
- Covers the most industry-relevant cable types such as automotive, nuclear power cables, undersea, coaxial, optical, medium- and high-voltage cables
Written for power engineers, materials scientists, chemists and engineering scientists in industry, The Global Cable Industry is an up-to-date guide to the multi-billion-dollar cable enterprise.
Table of Contents
About the Editor xv
1 Overview of the Global Cable Industry - Markets and Materials 1
Astrid Aupetit
1.1 Demand for Polymeric Material 3
1.1.1 Main Companies Profile 3
1.1.1.1 Prysmian 4
1.1.1.2 Nexans 4
1.1.1.3 Southwire 5
1.1.1.4 Sumitomo Electric Industries 5
1.1.1.5 Furukawa Electric Co., Ltd. 5
1.1.1.6 LS Cable & System 6
1.1.1.7 Leoni AG 6
1.1.1.8 Hengtong Group 6
1.1.2 Global Demand 7
1.2 Asia and Australasia 10
1.2.1 Demand for Cable 10
1.2.2 Demand for Polymeric Material 11
1.3 Europe 12
1.3.1 Demand for Cables 12
1.3.2 Demand for Polymeric Materials 13
1.4 The Middle East and Africa 14
1.4.1 Demand for Cables 14
1.4.2 Demand for Polymeric Materials 14
1.5 North America 16
1.5.1 Demand for Cables 16
1.5.2 Demand for Polymeric Materials 17
1.6 South and Central America 18
1.6.1 Demand for Cables 18
1.6.2 Demand for Polymeric Materials 19
2 Thermoplastics for Cables 21
Theo Geussens
2.1 Introduction 21
2.2 Polyolefin Materials 21
2.2.1 Polyethylene 22
2.2.1.1 Manufacturing Processes 25
2.2.1.2 Cable Applications 26
2.2.2 Polypropylene (PP) 32
2.2.2.1 Manufacturing Processes 33
2.2.2.2 Applications 33
2.3 Chlorinated Polymers 35
2.3.1 Polyvinylchloride (PVC) 35
2.3.2 Chlorinated Polyethylene (CPE) 36
2.4 Fluoropolymers 37
2.4.1 Fluoro-Ethylene Propylene polymer 37
2.4.2 Polytetrafluoroethylene (PTFE), Ethylene Tetrafluoroethylene (ETFE), and Perfluoroalkoxy Polymer (PFA) 38
2.4.3 Ethylene Chlorotrifluoroethylene (ECTFE) 40
2.4.4 Polyvinyldifluoride (PVDF) 40
2.5 Polyamide (PA) 40
2.6 Polyesters 41
2.6.1 Polybutylphtherephtalate (PBT) 41
2.6.2 Polyester Elastomers 41
2.7 Thermoplastic Polyurethane 42
References 43
3 Elastomers for Cables 57
Burkhard Herpich
3.1 Introduction 57
3.2 Rubber Compounds 63
3.2.1 Rubber 63
3.2.2 Fillers 66
3.2.3 Plasticizer 68
3.2.4 Stabilizers 70
3.2.5 Classical Cross-linking Systems 71
3.2.5.1 Cross-linking with Sulfur Systems 71
3.2.5.2 Cross-linking with Peroxide Systems 71
3.2.5.3 Moving Die Rheometers (MDRs) 72
3.2.6 Other Cross-linking Systems 73
3.2.6.1 Cross-linking by Irradiation 73
3.2.6.2 Cross-linking with Silanes 73
3.3 Compounding 73
3.4 Extrusion 76
3.5 Cross-linking/Vulcanization 78
3.5.1 Vulcanization in Saturated HotWater Steam 78
3.5.2 Vulcanization in Liquid Salt Mixtures under Pressure 80
3.5.3 Electron Beam Cross-linking 81
References 82
4 Extrusion of Cables 85
Stéphan Puissant
4.1 Historical Introduction to Cable Extrusion 85
4.2 Extruder in Cable Lines 87
4.2.1 Description of the Single Screw Extruder 87
4.2.1.1 Different Functional Screw Zones 87
4.2.1.2 Description of a Screw Geometry 88
4.2.2 Feeding Zone of the Extrusion Screw 89
4.2.2.1 Friction-Based Feeding Mechanism 89
4.2.2.2 Simple Modeling of the Feeding Zone 90
4.2.2.3 Improvement of the Feeding Zone: Use of Helical Grooved Barrel 95
4.2.3 Thin Film Plastification 97
4.2.3.1 Melting on the Backside of Flight 97
4.2.3.2 Initiation of Liquid Film 98
4.2.3.3 Melt Flow Rate in the Liquid Film 99
4.2.3.4 Influence of Different Parameters on Melting Length 99
4.2.3.5 Thin Film Melting with the Help of a Barrier Zone 103
4.2.3.6 Barrier Zone, Its Advantages, and Its Drawbacks 103
4.2.4 Metering Zone 104
4.2.4.1 Representation of the Metering Zone 104
4.2.4.2 1D Analysis 105
4.2.5 Example of Results for 1D Model Including the Three Zones of the Screw 105
4.2.5.1 Influence of Friction Coefficients on the Screw Characteristics 105
4.2.5.2 Interaction Between Compression and Friction in the Feeding Zone 106
4.3 Accessories for Extruders 107
4.3.1 Mixing Zones 107
4.3.1.1 Observed Defaults 107
4.3.1.2 Devices Selection Criteria 109
4.3.1.3 Example of Results for Finathene HDPE 111
4.3.2 Melt Filtration Systems 113
4.3.3 Melt Gear Pumps 114
4.4 Extrusion Heads or Dies 115
4.4.1 Description of the Extrusion Head 115
4.4.1.1 Extrusion Head Function 115
4.4.2 Distributors 117
4.4.2.1 Head with Coat Hanger Type Distribution Channels 117
4.4.2.2 Distribution FunctionThrough Flattened Distribution Channels 119
4.4.2.3 Distributor with Helical Channels 119
4.4.3 Diameter Adaptation Function (Tooling) 119
4.4.3.1 Tube Tooling, DDR 120
4.4.3.2 Tube Tooling, DRB 121
4.4.4 Relation Between Pressure and Average Temperature Increase in an Extrusion Head 121
4.5 Cooling 122
4.5.1 Cooling Length Analytical Calculation for FineWires 122
4.5.2 Cooling Length Finite Difference Calculation for aWire of Radius >1mm with Copper Core and PE Insulation 123
4.6 Quality 124
4.6.1 The Quality Parameter and Its Measurement 124
4.6.1.1 Diameter and Product Circularity Measurement 125
4.6.1.2 ConcentricityMeasurement 126
4.6.1.3 Insulation Defects Measurements (Cable orWire) 126
4.6.1.4 CapacityMeasurement (TelecommunicationWire) 127
4.6.1.5 SheathingWall Thickness Measurement 128
4.6.1.6 Periodicity of Measurement Analysis 128
4.6.2 Common Production Defects, Causes, and Remedies 130
References 130
5 Foam Extrusion 133
Horst A. Scheid
5.1 Motivation 133
5.2 Physical Basics 133
5.3 Selection of Polymer 136
5.4 Selection of Blowing Agents 139
5.5 Extrusion Equipment 141
5.5.1 Extruder and Screw 143
5.5.2 Dosing Station 145
5.5.3 Gas Injection 145
5.5.4 Melt Transport from Screw to Die 148
5.5.5 Cooling Trough 149
5.5.6 Measurement Devices 151
5.6 Processing 151
5.6.1 Extrusion and Die Setup 152
5.6.2 Process Control Modes 153
5.6.3 PBA Handling 154
5.6.4 Maximum Void and Bubble Size 154
5.6.5 Inline Analysis by FFT 156
Glossary 157
References 158
6 Flame Retardancy of Cables 161
Günter Beyer
6.1 Introduction 161
6.2 Flame Propagation Tests forWires and Cables 163
6.3 Smoke, Corrosivity, and Toxicity Tests forWires and Cables 164
6.4 Circuit Integrity and Functional Integrity for Security Cables 165
6.5 Laboratory Tests for the Flammability ofWire and Cable Materials 167
6.6 Polymers for Flame-RetardantWires and Cables 167
6.7 Flame Retardants for Flame-RetardantWires and Cables 168
6.8 Flame-Retardant PVC 169
6.8.1 Flame Retardants for PVC and Flame-Retardant PVC Cable Formulations 169
6.8.1.1 Phthalate-Based Plasticizers and Other Plasticizers 169
6.8.1.2 Antimony Trioxide 169
6.8.1.3 Brominated Phthalate Plasticizers 170
6.8.1.4 Chlorinated Paraffins 171
6.8.1.5 Aluminum Hydroxide (ATH) and Magnesium Hydroxide (MDH) 171
6.8.1.6 Zinc Borate 172
6.8.1.7 Phosphate Plasticizers 172
6.8.1.8 Smoke Suppressants 172
6.8.1.9 Nanocomposites 173
6.9 Flame-Retardant Polyolefins 174
6.9.1 Flame Retardants for Polyolefins and HFFR Cable Formulations 175
6.9.1.1 Aluminum Hydroxide (ATH) and Magnesium Hydroxide (MDH) 175
6.9.1.2 Zinc Borate and Polysiloxanes 176
6.9.1.3 Nanocomposites 176
6.9.1.4 Ceramifiable Compounds 177
6.10 CPR (Construction Products Regulation) 178
References 179
7 CPR Testing of Cables 181
Franck Poutch
7.1 Introduction 181
7.2 FIPEC Program 182
7.2.1 FIPEC Approach 183
7.2.1.1 Real-Scale Scenario 184
7.2.1.2 Cable Selection 185
7.2.1.3 Real-Scale Fire Tests 186
7.2.1.4 Full-Scale Fire Test 186
7.2.1.5 Capability Study 188
7.2.1.6 Correlation Between Real- and Large-Scale Test 189
7.3 Construction Product Regulation (CPR) Framework 190
7.3.1 EN 13 501-6 193
7.3.2 EN ISO 1716 196
7.3.3 EN 60332-1-2 196
7.3.4 EN 50399 198
7.3.5 EN ISO 61034-1 (Apparatus) and -2 (Test Procedure) 199
7.3.6 EN 60754-2 201
References 206
7.A Measuring Heat Release Rate (HRR) by Oxygen Consumption Technique, and Smoke Density 208
7.A.1 Measure of the Heat Release Rate (HRR) by Oxygen Consumption Technique 208
7.A.1.1 Burning of Methane 208
7.A.1.2 Determination of the Mass Flow Rate (ṁa) 210
7.A.1.3 Smoke Opacity 211
7.A.1.4 Calculation of FIGRA and SMOGRA Index 212
8 Crosslinking Technologies 215
Ron Goethals
8.1 Introduction 215
8.2 Crosslinking, Curing, Vulcanizing 216
8.3 Crosslinking Processes 217
8.4 The Silane-Crosslinking Process 218
8.4.1 The Sioplas®Process 218
8.4.2 The Monosil®Process 219
8.4.3 Silane Copolymers 220
8.4.4 Reactivity of the Silane Crosslinking Process 220
8.4.5 Advantages and Disadvantages of Silane Crosslinking 221
8.5 The Peroxide Crosslinking Process (CV Curing) 222
8.5.1 Polymer Selection for Peroxide Crosslinking 223
8.5.2 Advantages and Disadvantages of Continuous Vulcanization 224
8.6 e-Beam Crosslinking 225
8.6.1 Awareness of e-Beams in Our Daily Life 225
8.6.2 The Principle of an e-Beam 227
8.6.3 Creating a High Voltage e-Beam 228
8.6.4 Scan Horn and BeamWindow 228
8.6.5 Under-Beam Handling System (UBHS) 229
8.6.6 Control System 231
8.6.7 Safety 232
8.6.7.1 Radiation and Radioactivity 232
8.6.7.2 Bremsstrahlung or X-rays 232
8.6.7.3 Shielding and Radioactivity 233
8.6.7.4 Other Safety Systems 234
8.6.7.5 Ozone 235
8.6.7.6 IAEA 235
8.6.8 Most Important Parameters During e-Beam Crosslinking 235
8.6.8.1 Voltage 235
8.6.8.2 Amperage 237
8.6.8.3 Radiation Dose 237
8.6.9 Capacity of an e-Beam 241
8.6.9.1 Functional Capacity 241
8.6.9.2 Efficiency 241
8.6.9.3 Dose 241
8.6.10 Temperature Rise 242
8.6.11 Compound Design 242
8.6.11.1 Polymers 242
8.6.12 Costs Indications of e-Beam Crosslinking 243
8.6.12.1 Annual Costs 243
8.6.12.2 AnnualThroughput and Costs per Kilograms 244
8.6.13 Advantages and Disadvantages of e-Beam Crosslinking 244
8.7 Conclusions 245
Further Reading 246
Silane Crosslinking 246
Peroxide Crosslinking 246
Electron-Beam Crosslinking 247
Hot-Set-Elongation 248
9 Nuclear Power Station Cables 249
Frank Liu
9.1 Development of Nuclear Power in theWorld 249
9.1.1 Development Stage of Nuclear Power in theWorld 249
9.1.2 Current Status of Nuclear Power Development All Over the World 251
9.1.3 Technical Characteristics and Differences of Nuclear Power Plants 256
9.1.3.1 Technical Characteristics of Various Reactors of Nuclear Power Plants 256
9.1.3.2 Technical Development of Nuclear Power Plant 257
9.1.3.3 Technical Characteristics of Typical Nuclear Power Plants in the World 258
9.1.3.4 Characteristics of CPR1000 Nuclear Power Plant 260
9.2 Development of Cables for Nuclear Power Plants 261
9.2.1 Development History of Cables for Nuclear Power Plants 261
9.2.2 Classification of Cables for Nuclear Power Plants 263
9.2.2.1 Classification by Use Function 263
9.2.2.2 Classification by Safety Level 263
9.2.2.3 Classification by Technical Types of Nuclear Power Plants 264
9.2.2.4 Classification by Use Occasion 264
9.2.3 Characteristics of Cables for Nuclear Power Plants 264
9.2.4 Standards for Nuclear Cables 267
9.2.5 Qualification and Test of Nuclear Cables 267
9.2.5.1 Significance of Class 1E Equipment Qualification in Nuclear Power Plants 267
9.2.5.2 Method of Class 1E Equipment Qualification in Nuclear Power Plants 269
9.2.5.3 Content and Difference of Class 1E Cable Qualification Test for Nuclear Power Plants 270
9.2.5.4 Key Points for Qualification of Class 1E Nuclear Power Cables 270
9.2.6 Research on Nuclear Cable Compounds 277
9.2.6.1 Application of Available Compounds 277
9.2.6.2 Discussion on Future Materials 281
9.3 Future Developments of Nuclear Cables 284
9.3.1 Development Trend of Global Nuclear Power 284
9.3.2 Development Trend of Nuclear Power in China 285
9.3.3 Development Trend of Nuclear Cables 286
References 289
10 Submarine Cables 291
George Georgallis
10.1 Introduction 291
10.2 Submarine Power Cable Applications 291
10.3 Submarine Power Cable Design Overview 292
10.4 Power System Considerations 293
10.5 Submarine Power Cable Elements 293
10.5.1 Cable Conductor 293
10.5.2 Cable Insulation 294
10.5.2.1 Lapped Insulation 294
10.5.2.2 Extruded Insulation 295
10.5.2.3 HVDC Cables 296
10.5.3 Metallic Sheaths 296
10.5.4 Armor Layers 297
10.5.5 Other Cable Elements 297
10.6 Submarine Cable Manufacturing 298
10.7 Submarine Power Cable Accessories 299
10.8 Submarine Power Cable Testing 301
10.8.1 Dynamic Submarine Cable Testing 303
10.8.2 Submarine Power Cable Sizing and Other Design Considerations 305
10.8.3 Submarine Power Cable Installation, Protection, and Commissioning 306
10.9 Submarine Power Cables - What Next? 308
References 308
11 MV and HV Cables 311
DetlefWald
11.1 History of Cables 311
11.2 Today’s Cables 311
11.2.1 Paper Cables 311
11.2.2 Extruded Cables 312
11.3 Conductor Design 312
11.4 Conductor Screen 312
11.5 Insulation 313
11.5.1 Production of Polyethylene 315
11.5.1.1 Influence of the Chain Transfer Agent 315
11.5.1.2 Cross-linked Polyethylene 317
11.5.1.3 Cleanliness 321
11.5.2 Insulation Screen 321
11.5.3 Metallic Screen 323
11.5.3.1 Different Types of Metallic Protections 324
11.5.3.2 Corrugated Screens 325
11.5.4 Comparing Different Metallic Screens 327
11.6 Jacketing/Sheathing 328
References 329
12 Coaxial Cables 331
Timothy Cooke
12.1 History 331
12.2 Design: Components and Principles 332
12.2.1 Components 332
12.2.2 Principles 336
12.3 Characteristic Impedance (Zo) 336
12.4 Velocity of Propagation 338
12.5 Capacitance 339
12.6 Attenuation 339
12.7 Impedance Mismatch - Reflection Coefficients and Return Loss 342
12.8 Applications 343
12.9 Video, TV, and Broadband Applications 344
12.10 Automotive Coaxial Cable Applications 345
12.11 Conclusions 348
References 349
13 Optical Fiber Cables 351
Chen Baoping, Yao Di, and Qian Feng
13.1 Optical Communication System 351
13.2 Fiber Main Features and Transmission Theory 353
13.2.1 Principle of Total Reflection and Optical Transmission Waveguide 353
13.2.2 The Classification and Main Features of Fiber 355
13.2.2.1 Classification of Fiber 355
13.2.2.2 Main Features of Fiber 359
13.2.3 Development of Optical Fiber Technology 359
13.2.3.1 Large Effective Area and Ultralow Loss Fiber 359
13.2.3.2 Photonic Crystal Fiber 361
13.2.3.3 Next Generation of Communication Fiber 361
13.3 Cable Design and Manufacturing Technology 363
13.3.1 Optical Cable Structural Design 363
13.3.1.1 Design Principle 363
13.3.1.2 Design Calculation of Optical Cable Structure 365
13.3.2 Manufacturing Process Route for Optical Cable 370
13.3.2.1 Technology of Fiber Coloring 371
13.3.2.2 Technology of Fiber Ribbon 372
13.3.2.3 Fiber Secondary Coating 372
13.3.2.4 Stranding Cable Technology 374
13.3.2.5 Sheath Extrusion of Optical Cable 374
13.3.3 Optical Cable Standards and Key Test Items 375
13.3.3.1 Cabled Fiber Attenuation Test 376
13.3.3.2 Test Principle and Methods for Cabled Fiber PMD 376
13.3.3.3 Cable Tensile Curve 377
13.4 Classification of Optical Cables and Typical Application 378
13.4.1 Classification of Optical Cables 378
13.4.1.1 Structure Characteristics of Indoor Optical Cable 379
13.4.1.2 Structure Characteristics of Outdoor Optical Cable 380
13.4.1.3 Structure and Technical Characteristics of Electric Optical Cable 381
13.4.2 Introduction to Typical Cable Structure and Application Scenarios 382
13.4.2.1 Typical Cable Structure and Application Scenarios 382
13.4.2.2 Introduction to New Special Optical Cable 385
13.5 Scale and Market of Fiber and Cable Industry 386
References 387
Index 389