Free Webex Call
The Global Automotive Emergency Brake & System Market is expected to grow in the forecasted period 2023F-2028F. Automatic emergency braking (AEB) is a device that automatically applies the brakes when it senses that a vehicle is likely to crash into another vehicle, a wall, a pedestrian, or an impediment. The car can either come to a complete stop or be slowed down to lessen the impact. In this manner, the accident is avoided, and even if it does, the damage is minimal. Rearview video systems (RVS), referred to as backup cameras, give drivers a view of the back of a car. They facilitate parking by preventing drivers from colliding with other cars. The cameras reduce accidents by simplifying reverse driving. The rearview mirror allows the driver to see the back field of vision and make decisions. Additionally reducing back over crashes and rear blind areas are backup cameras. By the advancement in technology in the automotive emergency breaking the adoption of these advanced brakes in the vehicle is increasing with the time.Speak directly to the analyst to clarify any post sales queries you may have.
10% Free customizationThis report comes with 10% free customization, enabling you to add data that meets your specific business needs.
Automatic Emergency Braking (AEB) is a safety feature that may detect when a collision is likely to happen and automatically apply the brakes to either slow down the vehicle before impact or stop it altogether to prevent a collision. Radar, cameras, or LiDAR are frequently used in this technology to spot dangerous conditions. The likelihood that the automated emergency braking system can stop the vehicle to avert a collision increases with the speed at which it is moving.
If the vehicle is moving at a speed greater than 30 km/h (18 mph) and the automated emergency braking senses that the distance to the vehicle in front of it or stationary is getting critically close, it prepares the braking system for emergency braking. The technology alerts the driver via an auditory and/or visual indication, followed by a brief but visible pull of the brakes, if they do not respond to a hazardous situation. The system then starts applying partial braking to slow down the vehicle and allow the driver a sufficient time to respond. The mechanism starts to support braking as soon as the driver presses the brake pedal.
Mechanisms are aimed at preventing and mitigating forward collisions. While AEB systems like Crash Imminent Braking (CIB) and Dynamic Brake Support (DBS) are expressly developed to assist drivers in preventing or lessening the severity of rear-end collisions, FCAM systems merely provide Forward Collision Warning (FCW). For some cars, DBS activation can cause the brake pedal to move farther than it was intended to, that is, towards the floor without more pressure from the driver's foot or programmable brake controllers. The vehicle's DBS system may be negatively impacted when paired with a brake application intended to keep the pedal in the same position throughout a test, referred as 'displacement feedback'. To address this, the DBS draft test procedure now includes a “hybrid-feedback” control option that uses a combination of position and force control logic.
While DBS systems give additional braking when sensors judge, the driver-applied brakes are not enough to stop the upcoming crash. CIB systems provide automated braking when forward-looking sensors indicate that a forthcoming crash is happening, and the driver has not applied the brakes. A forward-moving vehicle is less likely to be engaged in a rear-end collision with another vehicle driving in the same direction directly in front of it due to crash avoidance technologies known as FCAM (Forward Collision Avoidance and Mitigation). FCAM systems have the ability to automatically apply a vehicle's foundation brakes or supplement the driver's brake input in a way that avoids or lessens a rear-end collision, depending on the implementation and driving circumstance.
Safety offered by the Automotive Emergency Brake & System
Emergency brake systems provide an additional layer of safety for drivers, especially in emergency situations where the primary braking system may not be sufficient. For example, if the primary braking system fails, the emergency brake can be used to stop the vehicle and prevent accidents. The emergency brake system can prevent a parked vehicle from rolling away on an incline, which can be especially useful when parked on steep hills or uneven terrain. The emergency brake system allows drivers to park their vehicle without shifting it into park mode, which can be useful in situations where the transmission may be damaged, or the vehicle is parked on an incline. Using the emergency brake system when the vehicle is parked, it can help reduce wear and tear through the primary braking system, which can extend the life of the brakes.Technological Advancements
Many modern vehicles now come equipped with electronic emergency brake systems, which use an electric motor to engage and disengage the brake. These systems are often controlled by a switch or button and can be programmed to automatically engage when the vehicle is turned off or parked. AEB systems use sensors and cameras to detect potential collisions and automatically apply the brakes to avoid or reduce the severity of an impact. AEB systems are becoming increasingly common in new vehicles and are seen as a major advancement in vehicle safety.Brake-by-wire systems use electronic signals to control the brake system, rather than traditional hydraulic systems. These systems provide more precise control over the braking system and can be more responsive than traditional brake systems. Adaptive braking systems use sensors and cameras to detect changes in driving conditions and adjust the braking system accordingly. For example, these systems may adjust the brake pressure based on the speed of the vehicle or engage the emergency brake if the vehicle is parked on a steep incline.
Use Disc Brake Over the Drum Break
Disc brakes are considered better than drum brakes for automotive emergency braking systems. This is because disc brakes are better able to dissipate heat and maintain consistent stopping power, even under repeated heavy braking. In a disc brake system, a caliper clamps down on a rotating disc, or rotor, to slow or stop the vehicle. This design provides greater surface area for friction and heat dissipation, which helps prevent brake fading and allows for shorter stopping distances.Additionally, the design of the disc brake allows for easier cooling of the brake components, reducing the risk of brake failure due to overheating. On the other hand, drum brakes are less efficient at dissipating heat and can be prone to brake fade under heavy use. They tend to require more maintenance and can be more difficult to service than disc brakes. However, drum brakes may be used in some vehicles due to their lower cost and simplicity in design. Overall, disc brakes are generally considered to be the better choice for automotive emergency braking systems due to their superior performance and safety characteristics.'
Feature of Automotive Emergency Break
AEB, often known as automated emergency braking, is a function that actively assists drivers and improves safety, and this technology was initially launched by Volvo in 2008. It works to avoid collisions and crashes. This technology continuously gathers and tracks environmental data, including the distance between the vehicles, their speed, and speed of the vehicle. The AEB system will alerts the driver, if it notices anything that could lead to a collision, such as the quick stop of the car in front. If the driver continues to refuse to apply the brakes, AEB will stop the vehicle to avert a potential collision or lessen the severity of an impending collision.Market Segmentation
The Global Automotive Emergency Brake & System Market is divided into vehicle type, break type, technology type, product type. Based on vehicle type, the market is divided into passenger car and commercial vehicle. Based on break type, the market is divided into disc and drum. Based on technology type, the market is segmented into crash imminent braking, dynamic braking support, and forward collision warning. Based on product type, the market is segmented into lower speed AEBS and high speed AEBS. ds.Market Players
Major market players in the Global Automotive Emergency Brake & System Market are Denso Corporation, Robert Bosch GmbH, WABCO Holdings Inc., ZF Friedrichshafen AG, Autoliv Inc., Continental AG, Hitachi Automotive Systems Ltd., Delphi Automotive PLC, Valeo SA, Hyundai Mobis. The corporations are involved in formulating strategies to increase their market share and land new contracts with the OEM. Market participants are proactively creating joint ventures and partnerships with local producers in order to expand their footprint in new markets, such as Aptiv and Hyundai Motor Group to form autonomous driving joint venture. In addition to these objectives, it is anticipated that spending on R&D would aid firms in attracting more customers and increasing their market share as they develop innovative brake systems that incorporate sensors and other cutting-edge technology.Report Scope
In this report, the Global Automotive Emergency Brake & System Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:Automotive Emergency Brake & System Market, by Vehicle Type:
- Passenger Car
- Commercial Vehicle
Automotive Emergency Brake & System Market, by Break Type:
- Disc
- Drum
Automotive Emergency Brake & System Market, by Technology Type:
- Crash Imminent Braking
- Dynamic Braking Support
- Forward Collision Warning
Automotive Emergency Brake & System Market, by Product Type:
- Low Speed AEBS
- High Speed AEBS
Automotive Emergency Brake & System Market, by Region:
- Asia-Pacific
- North America
- Europe & CIS
- Middle East & Africa
- South America
Competitive Landscape
Company Profiles: Detailed analysis of the major companies present in the Global Automotive Emergency Brake & System Market.Available Customizations
The following customization options are available for the report:- Detailed analysis and profiling of additional market players (up to five).
This product will be delivered within 1-3 business days.
Table of Contents
1. Introduction
2. Research Methodology
3. Executive Summary
4. Impact of COVID-19 on Global Automatic Emergency Brake Systems Market
5. Voice of Customer Analysis
6. Global Automatic Emergency Brake Systems Market
7. Asia-Pacific Automatic Emergency Brake Systems Market Outlook
8. Europe & CIS Automatic Emergency Brake Systems Market Outlook
9. North America Automatic Emergency Brake Systems Market Outlook
10. South America Automatic Emergency Brake Systems Market Outlook
11. Middle East & Africa Automatic Emergency Brake Systems Market Outlook
12. SWOT Analysis
13. Porter’s Five Forces Model
14. Market Dynamics
16. Competitive Landscape
17. Strategic Recommendations
Companies Mentioned
- Denso Corporation
- Robert Bosch GmbH
- WABCO Holding Inc.
- ZF Friedrichshafen AG
- Autoliv Inc.
- Continental AG
- Hitachi Automotive Systems Ltd.
- Delphi Automotive PLC
- Valeo SA
- Hyundai Mobis