+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Heat Recovery Steam Generator Market - Global Industry Size, Share, Trends, Opportunities and Forecast, 2018-2028

  • PDF Icon

    Report

  • 170 Pages
  • September 2023
  • Region: Global
  • TechSci Research
  • ID: 5880611
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Global Heat Recovery Steam Generator Market reached a size of USD 890.61 million in 2022 and is projected to grow to USD 1317.59 million by 2028, with a CAGR of 3.26% through 2028. Rapid urbanization and industrial growth have significantly increased the demand for energy, driving the global heat recovery steam generator (HRSG) market. The need for efficient energy management to optimize resource utilization has emerged as a prominent factor. Moreover, the market has been propelled by escalating electricity prices and the demand for more effective power generation processes. Additionally, the implementation of stringent government regulations to reduce carbon footprint and the growing environmental awareness have contributed to the widespread adoption of HRSGs across industries. The popularity of HRSGs among energy-efficient sectors can be attributed to their ability to generate clean energy.

Key Market Drivers

Increasing Demand for Energy Efficiency and Sustainability

One of the key drivers propelling the Global Heat Recovery Steam Generator (HRSG) Market is the increasing global demand for energy efficiency and sustainability in industrial processes and power generation. With growing concerns about climate change, environmental impact, and resource scarcity, industries, and power plants are actively seeking ways to optimize energy utilization and reduce emissions. HRSGs play a pivotal role in achieving these objectives by enabling the recovery of waste heat from various sources and converting it into valuable steam energy. The concept of energy efficiency extends beyond resource conservation; it also encompasses maximizing energy output from a given input. Through integration into combined cycle power plants or industrial processes, HRSGs facilitate the utilization of waste heat that would otherwise be lost. This results in improved overall system efficiency, reduced fuel consumption, and decreased greenhouse gas emissions. Furthermore, the sustainability aspect underscores the significance of HRSGs. By recovering waste heat and generating additional energy without additional fuel consumption, HRSGs contribute to a more sustainable energy mix. This aligns with global efforts to transition away from fossil fuels and reduce the carbon footprint of energy-intensive operations. Governments and regulatory bodies worldwide are implementing policies and incentives to promote the adoption of energy-efficient technologies. International agreements such as the Paris Agreement have created a sense of urgency, prompting industries to explore solutions like HRSGs that not only enhance efficiency but also align with sustainability targets. As industries and power generation continue to prioritize energy efficiency and sustainability, the demand for HRSG technology is expected to remain strong, driving market growth.

Expansion of Combined Cycle Power Generation

The growth of the Global Heat Recovery Steam Generator (HRSG) Market is strongly influenced by the increasing adoption of combined cycle power generation. Combined cycle power plants, comprising gas turbines and steam turbines, are highly valued for their efficiency and flexibility. HRSGs play a crucial role in these plants by capturing waste heat from gas turbines and converting it into steam, which drives a secondary steam turbine for additional power generation. The efficiency of combined-cycle power plants stems from extracting energy from both the gas turbine's exhaust and the steam turbine's condenser. HRSGs contribute to this efficiency by converting wasted heat into useful energy, resulting in higher thermal efficiency and lower fuel consumption compared to traditional power plants. The expansion of combined cycle power generation is driven by multiple factors. Firstly, the flexibility of these plants allows them to adapt to both baseload and peaking power generation, accommodating fluctuations in electricity demand. Secondly, the increasing use of gas-fired power generation, particularly in regions like North America, creates a favorable environment for combined cycle plants and HRSG technology. Furthermore, the integration of renewable energy sources, such as solar and wind power, with gas turbines is being explored to create hybrid power systems. HRSGs can complement intermittent renewables by providing steady and reliable steam generation, thereby enhancing the overall efficiency and reliability of the energy mix. As the demand for efficient and flexible power generation continues to rise, the adoption of combined cycle plants and HRSGs is expected to drive the expansion of the HRSG market.

Key Market Challenges

Technological Complexity and Efficiency Enhancement

One primary challenge lies in designing HRSGs that can efficiently capture and transfer waste heat while minimizing energy losses. This entails engineering intricate heat exchange systems, selecting appropriate materials, and managing fluid dynamics within the generator. Achieving optimal heat transfer and minimizing heat loss necessitates a profound understanding of thermodynamics and fluid mechanics, leading to intricate designs that require specialized expertise. Furthermore, HRSGs must adapt to varying operating conditions, including load changes, fuel composition fluctuations, and temperature variations. This requires advanced control systems capable of dynamically adjusting steam generation parameters to maintain efficient performance. Balancing the demands of flexibility, efficiency, and operational stability presents an ongoing challenge for HRSG manufacturers and operators. The ongoing pursuit of efficiency enhancement is another aspect of this challenge. As industries and power plants strive to maximize energy utilization and minimize emissions, HRSGs must continuously evolve to achieve higher thermal efficiency levels. Incorporating innovative materials, advanced heat exchanger designs, and improved control strategies is imperative to keep up with efficiency expectations and regulatory requirements.

Key Market Trends

Flexible Integration and Hybrid Power Systems

The use of flexible integration and hybrid power systems is reshaping the Global Heat Recovery Steam Generator (HRSG) Market. As the energy landscape evolves and diversifies, HRSGs are increasingly being integrated into hybrid power plants that combine multiple energy sources, such as renewables and conventional fossil fuels. Hybrid power systems offer advantages such as enhanced operational flexibility, increased efficiency, and reduced environmental impact. HRSGs play a crucial role in these systems by effectively utilizing waste heat generated from gas turbines or other sources, contributing to overall efficiency improvement. One manifestation of this trend is the integration of HRSGs with renewable energy sources, such as solar and wind power. These variable energy sources can be complemented by HRSGs, which provide stable steam generation to supplement intermittent renewables. This synergy enhances the reliability of the power supply and minimizes the need for additional backup systems. Another aspect involves the coupling of HRSGs with energy storage technologies. Advanced energy storage solutions, such as batteries and thermal storage systems, can buffer the fluctuating nature of renewable energy sources. HRSGs can then efficiently convert stored thermal energy into steam, providing continuous power generation even when renewables are not producing energy. Hybrid power systems require sophisticated control strategies to optimize the operation of different components. The ability to seamlessly transition between energy sources while maintaining grid stability and efficiency is a critical challenge in realizing the potential of this trend. As the trend of flexible integration and hybrid power systems gains momentum, the HRSG market will experience a demand for adaptable designs, advanced control systems, and comprehensive engineering expertise. Collaborations between HRSG manufacturers, renewable energy companies, and control system developers will be essential in maximizing the benefits of hybrid power systems.

Segmental Insights

Design Insights

Horizontal Drum Units segment is expected to dominate the market during the forecast period. Horizontal drum HRSGs are designed with a horizontal orientation of the steam drums, as opposed to the vertical arrangement found in vertical drum HRSGs. This design choice offers several advantages, including enhanced natural circulation of water and steam, improved heat transfer efficiency, and the potential for reduced structural stress. The horizontal drum configuration allows for a more uniform distribution of the steam-water mixture, aiding in better separation of steam and water phases. These HRSGs consist of various pressure components, such as economizers, evaporators, and superheaters, interconnected by horizontal headers. This configuration facilitates efficient heat exchange and steam generation, contributing to higher overall thermal efficiency. The horizontal drum design promotes efficient heat transfer due to the natural circulation of water and steam, resulting in improved energy conversion and increased overall thermal efficiency. Horizontal drum HRSGs are renowned for their flexibility in accommodating various operating conditions and load changes, making them suitable for both base load and peaking power generation. They find application in a range of industries and power generation scenarios, commonly used in combined cycle power plants to recover waste heat from gas turbines and generate steam for additional electricity generation. Moreover, they are employed in cogeneration plants, industrial processes, and district heating applications.

End-user Insights

The utility segment is expected to dominate the market during the forecast period. HRSGs are extensively utilized in utility-scale power generation, particularly in combined cycle power plants. In a combined cycle configuration, gas turbines are employed to generate electricity through the combustion of natural gas. The waste heat produced by these turbines is harnessed by HRSGs, which convert it into steam. This steam is then utilized to drive a steam turbine, thereby generating additional electricity. The symbiotic relationship between gas and steam turbines in combined cycle plants significantly enhances overall efficiency and reduces fuel consumption when compared to conventional power plants. HRSGs play a crucial role in the utility segment's objective of maximizing energy efficiency. By recovering waste heat from gas turbines and utilizing it for steam generation, HRSGs optimize the overall conversion of energy from fuel to electricity. This improved efficiency leads to reduced fuel consumption, resulting in cost savings for utilities. HRSGs empower utilities to generate more electricity from the same amount of fuel, thereby optimizing operational costs.

Regional Insights

North America is expected to dominate the market during the forecast period. North America plays a prominent role in the HRSG market, driven by its well-established industrial sector, robust energy infrastructure, and growing focus on energy efficiency and emissions reduction. HRSGs are essential components of combined cycle power plants, which are prevalent in the region's energy generation landscape. These plants integrate gas turbines and steam turbines to optimize energy conversion and efficiency. The region is undergoing a shift towards cleaner and more efficient energy sources. HRSGs are key to this transition as they enable the recovery of waste heat from gas turbines, reducing fuel consumption and emissions. North America's abundant natural gas resources have resulted in a significant rise in gas-fired power generation. HRSGs are utilized to capture waste heat from these gas turbines, enhancing the overall efficiency of power plants and contributing to a more sustainable energy mix. The integration of HRSGs with renewable energy sources is a growing trend. Hybrid power systems that combine HRSGs with solar or wind power are being explored to improve energy resilience and optimize energy utilization.

Key Market Players

  • Thermax Limited
  • Siemens AG
  • Mitsubishi Hitachi Power Systems Ltd
  • AC BOILERS SpA
  • Kelvion Holding GmbH
  • General Electric Company
  • Alfa Laval AB
  • Mersen SA
  • Sofinter SpA
  • Alstom SA

Report Scope:

In this report, the Global Heat Recovery Steam Generator Market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:

Global Heat Recovery Steam Generator Market, By Design:

  • Horizontal Drum Units
  • Vertical Drum Units

Global Heat Recovery Steam Generator Market, By Application:

  • Cogeneration
  • Combined Heat & Power

Global Heat Recovery Steam Generator Market, By Power Rating:

  • Up to 30 MW
  • 31 MW - 100 MW

Global Heat Recovery Steam Generator Market, By End-user:

  • Utility
  • Chemicals

Global Heat Recovery Steam Generator Market, By Region:

  • North America
  • Europe
  • Latin America
  • Middle East & Africa
  • Asia Pacific

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Heat Recovery Steam Generator Market.

Available Customizations:

Global Heat Recovery Steam Generator Market report with the given market data, the publisher offers customizations according to a company's specific needs.


This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Baseline Methodology
2.2. Key Industry Partners
2.3. Major Association and Secondary Sources
2.4. Forecasting Methodology
2.5. Data Triangulation & Validation
2.6. Assumptions and Limitations
3. Executive Summary4. Impact of COVID-19 on Global Heat Recovery Steam Generator Market5. Voice of Customer6. Global Heat Recovery Steam Generator Market Overview
7. Global Heat Recovery Steam Generator Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Design (Horizontal Drum Units, Vertical Drum Units)
7.2.2. By Application (Cogeneration, Combined Heat & Power)
7.2.3. By Power Rating (Up to 30 MW, 31 MW - 100 MW)
7.2.4. By End-user (Utility, Chemicals)
7.2.5. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
7.3. By Company (2022)
7.4. Market Map
8. North America Heat Recovery Steam Generator Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Design
8.2.2. By Application
8.2.3. By Power Rating
8.2.4. By End-user
8.2.5. By Country
8.2.5.1. United States Heat Recovery Steam Generator Market Outlook
8.2.5.1.1. Market Size & Forecast
8.2.5.1.1.1. By Value
8.2.5.1.2. Market Share & Forecast
8.2.5.1.2.1. By Design
8.2.5.1.2.2. By Application
8.2.5.1.2.3. By Power Rating
8.2.5.1.2.4. By End-user
8.2.5.2. Canada Heat Recovery Steam Generator Market Outlook
8.2.5.2.1. Market Size & Forecast
8.2.5.2.1.1. By Value
8.2.5.2.2. Market Share & Forecast
8.2.5.2.2.1. By Design
8.2.5.2.2.2. By Application
8.2.5.2.2.3. By Power Rating
8.2.5.2.2.4. By End-user
8.2.5.3. Mexico Heat Recovery Steam Generator Market Outlook
8.2.5.3.1. Market Size & Forecast
8.2.5.3.1.1. By Value
8.2.5.3.2. Market Share & Forecast
8.2.5.3.2.1. By Design
8.2.5.3.2.2. By Application
8.2.5.3.2.3. By Power Rating
8.2.5.3.2.4. By End-user
9. Europe Heat Recovery Steam Generator Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Design
9.2.2. By Application
9.2.3. By Power Rating
9.2.4. By End-user
9.2.5. By Country
9.2.5.1. Germany Heat Recovery Steam Generator Market Outlook
9.2.5.1.1. Market Size & Forecast
9.2.5.1.1.1. By Value
9.2.5.1.2. Market Share & Forecast
9.2.5.1.2.1. By Design
9.2.5.1.2.2. By Application
9.2.5.1.2.3. By Power Rating
9.2.5.1.2.4. By End-user
9.2.5.2. France Heat Recovery Steam Generator Market Outlook
9.2.5.2.1. Market Size & Forecast
9.2.5.2.1.1. By Value
9.2.5.2.2. Market Share & Forecast
9.2.5.2.2.1. By Design
9.2.5.2.2.2. By Application
9.2.5.2.2.3. By Power Rating
9.2.5.2.2.4. By End-user
9.2.5.3. United Kingdom Heat Recovery Steam Generator Market Outlook
9.2.5.3.1. Market Size & Forecast
9.2.5.3.1.1. By Value
9.2.5.3.2. Market Share & Forecast
9.2.5.3.2.1. By Design
9.2.5.3.2.2. By Application
9.2.5.3.2.3. By Power Rating
9.2.5.3.2.4. By End-user
9.2.5.4. Italy Heat Recovery Steam Generator Market Outlook
9.2.5.4.1. Market Size & Forecast
9.2.5.4.1.1. By Value
9.2.5.4.2. Market Share & Forecast
9.2.5.4.2.1. By Design
9.2.5.4.2.2. By Application
9.2.5.4.2.3. By Power Rating
9.2.5.4.2.4. By End-user
9.2.5.5. Spain Heat Recovery Steam Generator Market Outlook
9.2.5.5.1. Market Size & Forecast
9.2.5.5.1.1. By Value
9.2.5.5.2. Market Share & Forecast
9.2.5.5.2.1. By Design
9.2.5.5.2.2. By Application
9.2.5.5.2.3. By Power Rating
9.2.5.5.2.4. By End-user
10. South America Heat Recovery Steam Generator Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Design
10.2.2. By Application
10.2.3. By Power Rating
10.2.4. By End-user
10.2.5. By Country
10.2.5.1. Brazil Heat Recovery Steam Generator Market Outlook
10.2.5.1.1. Market Size & Forecast
10.2.5.1.1.1. By Value
10.2.5.1.2. Market Share & Forecast
10.2.5.1.2.1. By Design
10.2.5.1.2.2. By Application
10.2.5.1.2.3. By Power Rating
10.2.5.1.2.4. By End-user
10.2.5.2. Colombia Heat Recovery Steam Generator Market Outlook
10.2.5.2.1. Market Size & Forecast
10.2.5.2.1.1. By Value
10.2.5.2.2. Market Share & Forecast
10.2.5.2.2.1. By Design
10.2.5.2.2.2. By Application
10.2.5.2.2.3. By Power Rating
10.2.5.2.2.4. By End-user
10.2.5.3. Argentina Heat Recovery Steam Generator Market Outlook
10.2.5.3.1. Market Size & Forecast
10.2.5.3.1.1. By Value
10.2.5.3.2. Market Share & Forecast
10.2.5.3.2.1. By Design
10.2.5.3.2.2. By Application
10.2.5.3.2.3. By Power Rating
10.2.5.3.2.4. By End-user
11. Middle East & Africa Heat Recovery Steam Generator Market Outlook
11.1. Market Size & Forecast
11.1.1. By Value
11.2. Market Share & Forecast
11.2.1. By Design
11.2.2. By Application
11.2.3. By Power Rating
11.2.4. By End-user
11.2.5. By Country
11.2.5.1. Saudi Arabia Heat Recovery Steam Generator Market Outlook
11.2.5.1.1. Market Size & Forecast
11.2.5.1.1.1. By Value
11.2.5.1.2. Market Share & Forecast
11.2.5.1.2.1. By Design
11.2.5.1.2.2. By Application
11.2.5.1.2.3. By Power Rating
11.2.5.1.2.4. By End-user
11.2.5.2. UAE Heat Recovery Steam Generator Market Outlook
11.2.5.2.1. Market Size & Forecast
11.2.5.2.1.1. By Value
11.2.5.2.2. Market Share & Forecast
11.2.5.2.2.1. By Design
11.2.5.2.2.2. By Application
11.2.5.2.2.3. By Power Rating
11.2.5.2.2.4. By End-user
11.2.5.3. South Africa Heat Recovery Steam Generator Market Outlook
11.2.5.3.1. Market Size & Forecast Market
11.2.5.3.1.1. By Value
11.2.5.3.2. Market Share & Forecast
11.2.5.3.2.1. By Design
11.2.5.3.2.2. By Application
11.2.5.3.2.3. By Power Rating
11.2.5.3.2.4. By End-user
12. Asia Pacific Heat Recovery Steam Generator Market Outlook
12.1. Market Size & Forecast
12.1.1. By Value
12.2. Market Share & Forecast
12.2.1. By Design
12.2.2. By Application
12.2.3. By Power Rating
12.2.4. By End-user
12.2.5. By Country
12.2.5.1. China Heat Recovery Steam Generator Market Outlook
12.2.5.1.1. Market Size & Forecast
12.2.5.1.1.1. By Value
12.2.5.1.2. Market Share & Forecast
12.2.5.1.2.1. By Design
12.2.5.1.2.2. By Application
12.2.5.1.2.3. By Power Rating
12.2.5.1.2.4. By End-user
12.2.5.2. India Heat Recovery Steam Generator Market Outlook
12.2.5.2.1. Market Size & Forecast
12.2.5.2.1.1. By Value
12.2.5.2.2. Market Share & Forecast
12.2.5.2.2.1. By Design
12.2.5.2.2.2. By Application
12.2.5.2.2.3. By Power Rating
12.2.5.2.2.4. By End-user
12.2.5.3. Japan Heat Recovery Steam Generator Market Outlook
12.2.5.3.1. Market Size & Forecast
12.2.5.3.1.1. By Value
12.2.5.3.2. Market Share & Forecast
12.2.5.3.2.1. By Design
12.2.5.3.2.2. By Application
12.2.5.3.2.3. By Power Rating
12.2.5.3.2.4. By End-user
12.2.5.4. South Korea Heat Recovery Steam Generator Market Outlook
12.2.5.4.1. Market Size & Forecast
12.2.5.4.1.1. By Value
12.2.5.4.2. Market Share & Forecast
12.2.5.4.2.1. By Design
12.2.5.4.2.2. By Application
12.2.5.4.2.3. By Power Rating
12.2.5.4.2.4. By End-user
12.2.5.5. Australia Heat Recovery Steam Generator Market Outlook
12.2.5.5.1. Market Size & Forecast
12.2.5.5.1.1. By Value
12.2.5.5.2. Market Share & Forecast
12.2.5.5.2.1. By Design
12.2.5.5.2.2. By Application
12.2.5.5.2.3. By Power Rating
12.2.5.5.2.4. By End-user
13. Market Dynamics
13.1. Drivers
13.2. Challenges
14. Market Trends and Developments
15. Company Profiles
15.1. Thermax Limited
15.1.1. Business Overview
15.1.2. Key Revenue and Financials
15.1.3. Recent Developments
15.1.4. Key Personnel
15.1.5. Key Product/Services Offered
15.2. Siemens AG
15.2.1. Business Overview
15.2.2. Key Revenue and Financials
15.2.3. Recent Developments
15.2.4. Key Personnel
15.2.5. Key Product/Services Offered
15.3. Mitsubishi Hitachi Power Systems Ltd
15.3.1. Business Overview
15.3.2. Key Revenue and Financials
15.3.3. Recent Developments
15.3.4. Key Personnel
15.3.5. Key Product/Services Offered
15.4. AC BOILERS SpA
15.4.1. Business Overview
15.4.2. Key Revenue and Financials
15.4.3. Recent Developments
15.4.4. Key Personnel
15.4.5. Key Product/Services Offered
15.5. Kelvion Holding GmbH
15.5.1. Business Overview
15.5.2. Key Revenue and Financials
15.5.3. Recent Developments
15.5.4. Key Personnel
15.5.5. Key Product/Services Offered
15.6. General Electric Company
15.6.1. Business Overview
15.6.2. Key Revenue and Financials
15.6.3. Recent Developments
15.6.4. Key Personnel
15.6.5. Key Product/Services Offered
15.7. Alfa Laval AB
15.7.1. Business Overview
15.7.2. Key Revenue and Financials
15.7.3. Recent Developments
15.7.4. Key Personnel
15.7.5. Key Product/Services Offered
15.8. Mersen SA
15.8.1. Business Overview
15.8.2. Key Revenue and Financials
15.8.3. Recent Developments
15.8.4. Key Personnel
15.8.5. Key Product/Services Offered
15.9. Sofinter SpA
15.9.1. Business Overview
15.9.2. Key Revenue and Financials
15.9.3. Recent Developments
15.9.4. Key Personnel
15.9.5. Key Product/Services Offered
15.10. Alstom SA
15.10.1. Business Overview
15.10.2. Key Revenue and Financials
15.10.3. Recent Developments
15.10.4. Key Personnel
15.10.5. Key Product/Services Offered
16. Strategic Recommendations17. About the Publisher & Disclaimer

Companies Mentioned

  • Thermax Limited
  • Siemens AG
  • Mitsubishi Hitachi Power Systems Ltd
  • AC BOILERS SpA
  • Kelvion Holding GmbH
  • General Electric Company
  • Alfa Laval AB
  • Mersen S
  • Sofinter SpA
  • Alstom SA

Table Information