Antimicrobial Peptides: A Roadmap for Accelerating Discovery and Development covers the most important efforts of scientists and engineers worldwide to accelerate the process of discovery, production, and eventual market penetration of more potent antimicrobial peptides. These efforts have been fueled by emerging technologies such as artificial intelligence and data science, molecular and CFD simulations, easy-to-use process simulation packages, microfluidics, 3D-printing, among many others. Such technologies can now be implemented and scaled up quickly and at relatively low cost in low-budget production facilities, critical to moving to sustainable and marketable products worldwide. Discovering novel antimicrobial peptides rationally and cost-effectively has emerged as one of the significant challenges of modern biotechnology. Thus far, this process has been tedious and costly, resulting in molecules with activities far below those needed to address the current challenge of microbial resistance to antibiotics that takes the lives of thousands of people around the world every year. Finally, the book also highlights how multidisciplinary teams have assembled to address the challenges of manufacturing, biological testing, and clinical trials to finally reach complete translation.
Table of Contents
Introduction. Antimicrobial peptides: from the bench to the bedside Section 1. Computational approaches 1. Bioinformatic methods for the design of antimicrobial peptides 2. Fundamentals of molecular dynamics for antimicrobial peptides' discovery 3. Artificial intelligence for the discovery of antimicrobial peptides 4. Computational tools for handling large databases of biological relevance 5. Statistical analysis and data interpretation Section 2. Experimental approaches 6. Chemical synthesis of peptides: conventional and novel routes 7. Physicochemical and biochemical characterization 8. Non-rational approaches based on microbial surface display 9. Classical and emerging approximations for the screening of peptide libraries 10. Scaling-up of biological production processes 11. Downstream processing 12. Physicochemical and biochemical characterization Section 3. Translational studies 13. Biological characterization: in vitro and in vivo studies 14. Pre-clinical and clinical studies 15. Formulation and product design 16. Packaging, long-term stability, and usability 17. Quality control and assurance