The immersion cooling for EV batteries market size was valued at US$ 1.23 million in 2022 and is expected to reach US$ 156.90 million by 2030; it is estimated to record a CAGR of 83.3%.
The single-phase immersion cooling technique does not require a complex cooling infrastructure, which reduces the additional infrastructure cost by increasing their adoption among EV battery users. Single-phase immersion cooling can directly contact all device components for cooling technique without causing cell thermal runaway. The increasing adoption of electric vehicles among consumers across the globe increases the adoption of immersion cooling for EV batteries. Consumers are widely adopting electric cars, the increasing demand for high-performance batteries for the long run. To fulfill consumers' demand, manufacturers must increase battery density and range, which require quick changing and cooling systems. However, significant benefits provided by the single-phase immersion cooling technique among EV battery users include minimizing electronic failure or reduced risk of shocks fueling the market growth. Shifting users’ preference toward adopting single-phase immersion cooling is associated with its simplicity, affordability, less maintenance, and support for easier cooling operations. These factors are anticipated to increase the demand for single-phase immersion cooling among EV battery users during the forecast period.
The Europe immersion cooling for EV batteries market is segmented into Germany, France, Spain, the UK, Italy, and the Rest of Europe. The expanding automotive sector is driving the market in this region. It is one of Europe's largest sectors, representing over 7% of the region's GDP. The region consists of various established car manufacturers continuously working on increasing the production and sales of electric vehicles. According to the European Automobile Manufacturers Association (ACEA), in Q4 of 2022, the region witnessed an increase in the registrations of new battery electric cars by 31.6%, selling 406,890 total units. Out of this, Germany registered 198,293 units of BEVs. France registered 62,155 units, and Sweden registered 37,013 unit sales.
Governments of countries in the region are taking various initiatives for the adoption of EVs in the region. For instance, in 2020, the government of the UK awarded US$ 57.87 million for various low-carbon automotive projects, including electric vehicle manufacturing. Also, in July 2021, the European Commission proposed a revised Regulation (EU) 2019/631 to reduce carbon emissions by cars and vans to achieve its 2030 and 2050 climate objectives. Such supportive government policies for reducing carbon emissions are expected to increase the adoption of EVs in the region. This will further propel the demand for high-capacity EV batteries, thereby raising the need for efficient battery cooling solutions and bolstering the growth of the immersion cooling for EV batteries market in Europe. Further, to support these government initiatives, various companies in the market are working on increasing EV production in the region. In March 2022, Ford planned to introduce three new passenger EVs and four new commercial EVs in Europe by 2024. The company also announced its plans to sell more than 600,000 EVs in the region by 2026. Thus, the increase in initiatives from leading players regarding EV production and development is anticipated to drive the immersion cooling for EV batteries market in Europe in the coming years.
Ricardo Plc, Mahle GmbH, Exoes SAS, Xing Mobility Inc, The Lubrizol Corp, SAE International, Rimac Technology Ltd, Cargill Inc, Engineered Fluids Inc, and M&I Materials Ltd are among the key stakeholders operating in the immersion cooling for EV batteries market. Various other companies are introducing new product offerings to contribute to the immersion cooling for EV batteries market size proliferation. Several other major companies have been analyzed during this research study to get a holistic view of the immersion cooling for EV batteries market ecosystem. The immersion cooling for EV batteries market report provides detailed market insights, which helps the key players strategize their growth.
Reasons to Buy
The single-phase immersion cooling technique does not require a complex cooling infrastructure, which reduces the additional infrastructure cost by increasing their adoption among EV battery users. Single-phase immersion cooling can directly contact all device components for cooling technique without causing cell thermal runaway. The increasing adoption of electric vehicles among consumers across the globe increases the adoption of immersion cooling for EV batteries. Consumers are widely adopting electric cars, the increasing demand for high-performance batteries for the long run. To fulfill consumers' demand, manufacturers must increase battery density and range, which require quick changing and cooling systems. However, significant benefits provided by the single-phase immersion cooling technique among EV battery users include minimizing electronic failure or reduced risk of shocks fueling the market growth. Shifting users’ preference toward adopting single-phase immersion cooling is associated with its simplicity, affordability, less maintenance, and support for easier cooling operations. These factors are anticipated to increase the demand for single-phase immersion cooling among EV battery users during the forecast period.
The Europe immersion cooling for EV batteries market is segmented into Germany, France, Spain, the UK, Italy, and the Rest of Europe. The expanding automotive sector is driving the market in this region. It is one of Europe's largest sectors, representing over 7% of the region's GDP. The region consists of various established car manufacturers continuously working on increasing the production and sales of electric vehicles. According to the European Automobile Manufacturers Association (ACEA), in Q4 of 2022, the region witnessed an increase in the registrations of new battery electric cars by 31.6%, selling 406,890 total units. Out of this, Germany registered 198,293 units of BEVs. France registered 62,155 units, and Sweden registered 37,013 unit sales.
Governments of countries in the region are taking various initiatives for the adoption of EVs in the region. For instance, in 2020, the government of the UK awarded US$ 57.87 million for various low-carbon automotive projects, including electric vehicle manufacturing. Also, in July 2021, the European Commission proposed a revised Regulation (EU) 2019/631 to reduce carbon emissions by cars and vans to achieve its 2030 and 2050 climate objectives. Such supportive government policies for reducing carbon emissions are expected to increase the adoption of EVs in the region. This will further propel the demand for high-capacity EV batteries, thereby raising the need for efficient battery cooling solutions and bolstering the growth of the immersion cooling for EV batteries market in Europe. Further, to support these government initiatives, various companies in the market are working on increasing EV production in the region. In March 2022, Ford planned to introduce three new passenger EVs and four new commercial EVs in Europe by 2024. The company also announced its plans to sell more than 600,000 EVs in the region by 2026. Thus, the increase in initiatives from leading players regarding EV production and development is anticipated to drive the immersion cooling for EV batteries market in Europe in the coming years.
Ricardo Plc, Mahle GmbH, Exoes SAS, Xing Mobility Inc, The Lubrizol Corp, SAE International, Rimac Technology Ltd, Cargill Inc, Engineered Fluids Inc, and M&I Materials Ltd are among the key stakeholders operating in the immersion cooling for EV batteries market. Various other companies are introducing new product offerings to contribute to the immersion cooling for EV batteries market size proliferation. Several other major companies have been analyzed during this research study to get a holistic view of the immersion cooling for EV batteries market ecosystem. The immersion cooling for EV batteries market report provides detailed market insights, which helps the key players strategize their growth.
Reasons to Buy
- Save and reduce time carrying out entry-level research by identifying the growth, size, leading players and segments in the global immersion cooling for EV batteries market.
- Highlights key business priorities in order to assist companies to realign their business strategies
- The key findings and recommendations highlight crucial progressive industry trends in the global immersion cooling for EV batteries market, thereby allowing players across the value chain to develop effective long-term strategies
- Develop/modify business expansion plans by using substantial growth offering developed and emerging markets
- Scrutinize in-depth global market trends and outlook coupled with the factors driving the market, as well as those hindering it
- Enhance the decision-making process by understanding the strategies that underpin commercial interest with respect to client products, segmentation, pricing and distribution
Table of Contents
1. Introduction
2. Executive Summary
3. Research Methodology
4. Immersion Cooling for EV Batteries Market Landscape
5. Immersion Cooling for EV Batteries Market - Key Industry Dynamics
6. Immersion Cooling for EV Batteries Market - Global Market Analysis
7. Immersion Cooling for EV Batteries Market Analysis - Type
8. Immersion Cooling for EV Batteries Market Analysis - Cooling Fluid Type
9. Immersion Cooling for EV Batteries Market - Geographical Analysis
10. Immersion Cooling for EV Batteries Market - Impact of COVID-19 Pandemic
11. Competitive Landscape
12. Industry Landscape
13. Company Profiles
14. Appendix
List of Tables
List of Figures
Companies Mentioned
- Ricardo Plc
- Mahle GmbH
- EXOES SAS
- XING Mobility Inc
- The Lubrizol Corp
- SAE International
- Rimac Technology Ltd
- Cargill Inc
- Engineered Fluids Inc
- M&I Materials Ltd
Table Information
Report Attribute | Details |
---|---|
No. of Pages | 116 |
Published | September 2023 |
Forecast Period | 2022 - 2030 |
Estimated Market Value ( USD | $ 1.23 Million |
Forecasted Market Value ( USD | $ 156.9 Million |
Compound Annual Growth Rate | 83.3% |
Regions Covered | Global |
No. of Companies Mentioned | 10 |