The global 3D cell culture market size reached US$ 2.32 billion in 2023. Looking forward, the market is expected to reach US$ 7.41 billion by 2032, exhibiting a growth rate (CAGR) of 13.8% during 2023-2032. The growing demand for 3D tissue-engineered models to diagnose cancer, rising need for airway and air-liquid interface organoids, and increasing utilization in studies that require in vivo model systems represent some of the key factors driving the market.
3D cell culture is a culture environment that enables cells to grow and interact with surrounding extracellular frameworks in three dimensions. It is a contrast to traditional 2D cell cultures wherein cells are grown in a flat monolayer on a plate. It can be cultured within supporting scaffolds, such as hydrogels and inert matrices, to allow growth in all directions. It relies on scaffold-free methods, such as low-adhesion plates, micropatterned surfaces, and hanging drops, for allowing cells to self-assemble into clusters or spheroids.
It is performed within the chambers of a microchip that allows the flow of liquid to transport and distribute nutrients or other chemicals throughout the cells. It represents more accurately the actual microenvironment wherein cells reside in tissues compared to 2D cell culture. As it is more reflective of in vivo cellular responses due to the additional dimensionality of 3D cultures, the demand for 3D cell culture is rising across the globe.
In addition, the rising demand for 3D cell culture, as it is a simple and inexpensive in vitro tumor-host environment compared to 2D techniques, is propelling the growth of the market. Moreover, the increasing usage of 3D models for performing research about respiratory diseases is offering lucrative growth opportunities to industry investors. Apart from this, there is an increase in the demand for airway and air-liquid interface organoids to develop and discover antiviral drugs and as experimental virology platforms and study the immune responses. This, coupled with the launch of new products and wide applications of 3D protocols in biological research, is strengthening the growth of the market.
According to the report, North America (the United States and Canada) was the largest market for 3D cell culture. Some of the factors driving the North America 3D cell culture market included the government funding for the development of advanced 3D cell culture models, high healthcare spending, the presence of a large number of universities and research organizations, etc.
Some of the companies covered include 3D Biotek LLC, Advanced Biomatrix Inc., Avantor Inc., CN Bio Innovations Limited, Corning Incorporated, Emulate Inc., InSphero AG, Lonza Group AG, Merck KGaA, Promocell GmbH, Synthecon Inc, Thermo Fisher Scientific Inc., etc. Kindly note that this only represents a partial list of companies, and the complete list has been provided in the report.
2. What is the expected growth rate of the global 3D cell culture market during 2024-2032?
3. What are the key factors driving the global 3D cell culture market?
4. What has been the impact of COVID-19 on the global 3D cell culture market?
5. What is the breakup of the global 3D cell culture market based on the product?
6. What is the breakup of the global 3D cell culture market based on the application?
7. What is the breakup of the global 3D cell culture market based on the end user?
8. What are the key regions in the global 3D cell culture market?
9. Who are the key players/companies in the global 3D cell culture market?
3D cell culture is a culture environment that enables cells to grow and interact with surrounding extracellular frameworks in three dimensions. It is a contrast to traditional 2D cell cultures wherein cells are grown in a flat monolayer on a plate. It can be cultured within supporting scaffolds, such as hydrogels and inert matrices, to allow growth in all directions. It relies on scaffold-free methods, such as low-adhesion plates, micropatterned surfaces, and hanging drops, for allowing cells to self-assemble into clusters or spheroids.
It is performed within the chambers of a microchip that allows the flow of liquid to transport and distribute nutrients or other chemicals throughout the cells. It represents more accurately the actual microenvironment wherein cells reside in tissues compared to 2D cell culture. As it is more reflective of in vivo cellular responses due to the additional dimensionality of 3D cultures, the demand for 3D cell culture is rising across the globe.
3D Cell Culture Market Trends:
At present, the increasing utilization of 3D cell culture in studies that require in vivo model systems, as 3D cultures can closely mimic a typical morphology and microarchitecture of organs, represents one of the key factors supporting the growth of the market. Besides this, there is a rise in the employment of 3D tissue-engineered models to diagnose cancer and other clinical disorders among the masses around the world. This, along with the growing demand for 3D cell culture to analyze the effects of a foreign drug over body tissues and organs, is offering a favorable market outlook.In addition, the rising demand for 3D cell culture, as it is a simple and inexpensive in vitro tumor-host environment compared to 2D techniques, is propelling the growth of the market. Moreover, the increasing usage of 3D models for performing research about respiratory diseases is offering lucrative growth opportunities to industry investors. Apart from this, there is an increase in the demand for airway and air-liquid interface organoids to develop and discover antiviral drugs and as experimental virology platforms and study the immune responses. This, coupled with the launch of new products and wide applications of 3D protocols in biological research, is strengthening the growth of the market.
Key Market Segmentation:
This report provides an analysis of the key trends in each sub-segment of the global 3D cell culture market report, along with forecasts at the global, regional and country level from 2024-2032. The report has categorized the market based on product, application and end user.Product Insights:
- Scaffold-Based Platforms
- Scaffold-Free Platforms
- Microchips
- Bioreactors
- Others
Application Insights:
- Cancer Research
- Stem Cell Research
- Drug Discovery
- Regenerative Medicine
- Others
End User Insights:
- Biotechnology and Pharmaceutical Companies
- Contract Research Laboratories
- Academic Institutes
- Others
Regional Insights:
- North America
- United States
- Canada
- Asia-Pacific
- China
- Japan
- India
- South Korea
- Australia
- Indonesia
- Others
- Europe
- Germany
- France
- United Kingdom
- Italy
- Spain
- Russia
- Others
- Latin America
- Brazil
- Mexico
- Others
- Middle East and Africa
According to the report, North America (the United States and Canada) was the largest market for 3D cell culture. Some of the factors driving the North America 3D cell culture market included the government funding for the development of advanced 3D cell culture models, high healthcare spending, the presence of a large number of universities and research organizations, etc.
Competitive Landscape:
The report has also provided a comprehensive analysis of the competitive landscape in the global 3D cell culture market. Competitive analysis such as market structure, market share by key players, player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.Some of the companies covered include 3D Biotek LLC, Advanced Biomatrix Inc., Avantor Inc., CN Bio Innovations Limited, Corning Incorporated, Emulate Inc., InSphero AG, Lonza Group AG, Merck KGaA, Promocell GmbH, Synthecon Inc, Thermo Fisher Scientific Inc., etc. Kindly note that this only represents a partial list of companies, and the complete list has been provided in the report.
Key Questions Answered in This Report
1. How big is the 3D cell culture market?2. What is the expected growth rate of the global 3D cell culture market during 2024-2032?
3. What are the key factors driving the global 3D cell culture market?
4. What has been the impact of COVID-19 on the global 3D cell culture market?
5. What is the breakup of the global 3D cell culture market based on the product?
6. What is the breakup of the global 3D cell culture market based on the application?
7. What is the breakup of the global 3D cell culture market based on the end user?
8. What are the key regions in the global 3D cell culture market?
9. Who are the key players/companies in the global 3D cell culture market?
Table of Contents
1 Preface3 Executive Summary11 Value Chain Analysis13 Price Analysis
2 Scope and Methodology
4 Introduction
5 Global 3D Cell Culture Market
6 Market Breakup by Product
7 Market Breakup by Application
8 Market Breakup by End User
9 Market Breakup by Region
10 SWOT Analysis
12 Porters Five Forces Analysis
14 Competitive Landscape
List of Figures
List of Tables
Companies Mentioned
- 3D Biotek LLC
- Advanced Biomatrix Inc.
- Avantor Inc.
- CN Bio Innovations Limited
- Corning Incorporated
- Emulate Inc.
- InSphero AG
- Lonza Group AG
- Merck KGaA
- Promocell GmbH
- Synthecon Inc
- Thermo Fisher Scientific Inc
Methodology
LOADING...
Table Information
Report Attribute | Details |
---|---|
No. of Pages | 136 |
Published | September 2024 |
Forecast Period | 2023 - 2032 |
Estimated Market Value ( USD | $ 2323.2 Million |
Forecasted Market Value ( USD | $ 7418.7 Million |
Compound Annual Growth Rate | 13.8% |
Regions Covered | Global |
No. of Companies Mentioned | 12 |