+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Radiation Cured Coatings Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2020-2030F

  • PDF Icon

    Report

  • 189 Pages
  • February 2025
  • Region: Global
  • TechSci Research
  • ID: 5915511
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Radiation Cured Coatings Market was valued at USD 21.65 Billion in 2024, and is expected to reach USD 27.43 Billion by 2030, rising at a CAGR of 3.98%. Radiation-cured coatings market has emerged as a shining beacon in the coatings industry, offering a spectrum of advantages that cater to diverse industrial needs. Leveraging the power of ultraviolet (UV) or electron beam (EB) curing, these coatings have witnessed substantial growth, driven by factors such as environmental sustainability, rapid curing times, and high-performance characteristics.

The radiation-cured coatings market stands at the forefront of coating technologies, driven by a confluence of factors such as sustainability, performance excellence, and technological innovations. As industries continue to prioritize efficiency, environmental responsibility, and high-quality finishes, radiation-cured coatings are poised to play an increasingly vital role in shaping the future of coatings across the globe.

Key Market Drivers

Growing Demand for Eco-Friendly Coatings

Unlike traditional coatings that rely on solvent-based formulations, radiation-cured coatings are 100% solid formulations that do not require solvents or water for application. Near-zero VOC emissions, reducing environmental impact and ensuring workplace safety. No hazardous air pollutants (HAPs), eliminating the need for additional air filtration systems or pollution control equipment. Lower carbon footprint, helping companies meet environmental sustainability goals and qualify for green certifications.

By addressing environmental concerns without compromising performance, radiation-cured coatings are becoming the go-to solution for manufacturers seeking high-performance, eco-friendly alternatives. Industries such as automotive and consumer electronics are actively shifting toward sustainable and high-performance coatings due to increasing regulatory scrutiny and consumer preferences for eco-friendly products. The automotive industry in the European Union has made significant strides toward sustainability. Between 2006 and 2021, emissions from car manufacturing across the region declined by over 45%, reflecting advancements in energy efficiency, cleaner production processes, and stricter environmental regulations.

Additionally, between 2012 and 2021, the carbon footprint of new vehicles was reduced by approximately 22%, driven by improved engine technologies, lightweight materials, and the growing adoption of electric and hybrid models. These trends underscore the industry’s ongoing transition toward low-emission mobility and regulatory compliance with EU climate goals. With governments worldwide promoting low-emission vehicle manufacturing, automakers are increasingly using radiation-cured coatings for interior and exterior parts such as dashboards, trims, and wheels. High durability and scratch resistance, extending the lifespan of components. Faster curing time, reducing energy consumption during production. Reduced environmental impact, supporting sustainability initiatives.

Expanding Applications in Packaging and Printing

The packaging and printing industries are undergoing a major transformation, driven by the need for sustainable, high-performance, and cost-effective coating solutions. As businesses focus on enhancing durability, aesthetics, and compliance with environmental regulations, radiation-cured coatings - which utilize ultraviolet (UV) and electron beam (EB) curing technology - are emerging as a preferred choice. The instant curing process, solvent-free formulation, and superior finish of radiation-cured coatings make them highly suitable for modern packaging and printing applications, fueling their global market expansion.

Key Market Challenges

High initial Capital Investment

At the heart of the challenge lies the need for specialized equipment, such as ultraviolet (UV) curing systems or electron beam (EB) curing units. The acquisition and installation of these technologies entail a substantial upfront investment, often serving as a deterrent for businesses contemplating the transition to radiation-cured coatings.

Small and medium-sized enterprises, with limited financial resources, find themselves facing pronounced barriers to entry. The capital-intensive nature of the initial investment can constrain the ability of SMEs to adopt radiation-cured coatings, limiting their competitiveness in the market.

The coatings industry, like many others, tends to be risk-averse when it comes to embracing new technologies that demand substantial financial commitments. The uncertainty surrounding returns on investment coupled with high upfront costs creates a hesitancy that permeates decision-making processes.

Companies evaluating the adoption of radiation-cured coatings grapple with the uncertainty of return on investment (ROI). The benefits of rapid curing and environmental sustainability must outweigh the initial capital outlay to justify the transition, leading to careful consideration and analysis.

Implementing radiation-cured coatings also demands skilled personnel to operate and maintain the specialized equipment. This necessitates additional investment in training or hiring experts, further contributing to the overall capital expenditure.

Key Market Trends

Expansion in End Use Industries

One of the key drivers propelling the radiation-cured coatings market is the diversification of applications beyond its traditional strongholds. Industries that traditionally relied on conventional coatings are now recognizing the unique advantages of radiation-cured formulations, leading to their integration in unconventional sectors.

The electronics and technology sector stands out as a notable beneficiary of the expansion trend. Radiation-cured coatings, with their rapid curing times and high-performance characteristics, are increasingly favored in electronic components and devices, offering protection, insulation, and enhanced aesthetics.

The medical devices and healthcare industry is witnessing a paradigm shift with the adoption of radiation-cured coatings. The coatings offer benefits such as biocompatibility, sterilization resistance, and precision in coating complex medical equipment, contributing to the sector's drive for innovation.

The rise of 3D printing technologies has created a fertile ground for radiation-cured coatings. The coatings play a crucial role in enhancing the performance of UV-curable resins used in 3D printing applications, addressing the unique challenges posed by additive manufacturing processes.

In the aerospace and aviation industry, where stringent performance standards and durability are paramount, radiation-cured coatings are gaining traction. Their ability to provide lightweight, high-performance coatings aligns with the industry's quest for materials that meet rigorous specifications.

Key Market Players

  • Dow Chemical Company
  • PPG Industries
  • The Sherwin-Williams Company
  • Akzo Nobel N.V.
  • ICA SpA
  • Axalta Coating Systems
  • Covestro AG
  • The Lubrizol Corporation
  • NEI Corporation

Report Scope:

In this report, the Global Radiation Cured Coatings Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Radiation Cured Coatings Market, By Raw Material:

  • Oligomers
  • Monomers
  • Photo Initiators
  • Additives

Radiation Cured Coatings Market, By Application:

  • Adhesives
  • Pulp and Paper
  • Printing Inks
  • Wood
  • Glass
  • Others

Radiation Cured Coatings Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Radiation Cured Coatings Market.

Available Customizations:

With the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report.

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Voice of Customer
5. Radiation Cured Coatings Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Raw Material (Oligomers, Monomers, Photo initiators, Additives)
5.2.2. By Application (Adhesives, Pulp and Paper, Printing Inks, Wood, Glass, Others)
5.2.3. By Region
5.2.4. By Company (2024)
5.3. Market Map
6. North America Radiation Cured Coatings Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Raw Material
6.2.2. By Application
6.2.3. By Country
6.3. North America: Country Analysis
6.3.1. United States Radiation Cured Coatings Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Raw Material
6.3.1.2.2. By Application
6.3.2. Canada Radiation Cured Coatings Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Raw Material
6.3.2.2.2. By Application
6.3.3. Mexico Radiation Cured Coatings Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Raw Material
6.3.3.2.2. By Application
7. Europe Radiation Cured Coatings Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Raw Material
7.2.2. By Application
7.2.3. By Country
7.3. Europe: Country Analysis
7.3.1. Germany Radiation Cured Coatings Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Raw Material
7.3.1.2.2. By Application
7.3.2. United Kingdom Radiation Cured Coatings Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Raw Material
7.3.2.2.2. By Application
7.3.3. Italy Radiation Cured Coatings Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Raw Material
7.3.3.2.2. By Application
7.3.4. France Radiation Cured Coatings Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Raw Material
7.3.4.2.2. By Application
7.3.5. Spain Radiation Cured Coatings Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Raw Material
7.3.5.2.2. By Application
8. Asia-Pacific Radiation Cured Coatings Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Raw Material
8.2.2. By Application
8.2.3. By Country
8.3. Asia-Pacific: Country Analysis
8.3.1. China Radiation Cured Coatings Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Raw Material
8.3.1.2.2. By Application
8.3.2. India Radiation Cured Coatings Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Raw Material
8.3.2.2.2. By Application
8.3.3. Japan Radiation Cured Coatings Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Raw Material
8.3.3.2.2. By Application
8.3.4. South Korea Radiation Cured Coatings Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Raw Material
8.3.4.2.2. By Application
8.3.5. Australia Radiation Cured Coatings Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Raw Material
8.3.5.2.2. By Application
9. South America Radiation Cured Coatings Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Raw Material
9.2.2. By Application
9.2.3. By Country
9.3. South America: Country Analysis
9.3.1. Brazil Radiation Cured Coatings Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Raw Material
9.3.1.2.2. By Application
9.3.2. Argentina Radiation Cured Coatings Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Raw Material
9.3.2.2.2. By Application
9.3.3. Colombia Radiation Cured Coatings Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Raw Material
9.3.3.2.2. By Application
10. Middle East and Africa Radiation Cured Coatings Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Raw Material
10.2.2. By Application
10.2.3. By Country
10.3. MEA: Country Analysis
10.3.1. South Africa Radiation Cured Coatings Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Raw Material
10.3.1.2.2. By Application
10.3.2. Saudi Arabia Radiation Cured Coatings Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Raw Material
10.3.2.2.2. By Application
10.3.3. UAE Radiation Cured Coatings Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Raw Material
10.3.3.2.2. By Application
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
12.1. Recent Developments
12.2. Product Launches
12.3. Mergers & Acquisitions
13. Global Radiation Cured Coatings Market: SWOT Analysis14. Porter’s Five Forces Analysis15. Pricing Analysis
16. Competitive Landscape
16.1. Dow Chemical Company
16.1.1. Business Overview
16.1.2. Product & Service Offerings
16.1.3. Recent Developments
16.1.4. Financials (If Listed)
16.1.5. Key Personnel
16.1.6. SWOT Analysis
16.2. PPG Industries
16.3. The Sherwin-Williams Company
16.4. Akzo Nobel N.V.
16.5. ICA SpA
16.6. Axalta Coating Systems
16.7. Covestro AG
16.8. The Lubrizol Corporation
16.9. NEI Corporation.
17. Strategic Recommendations18. About the Publisher & Disclaimer

Companies Mentioned

  • Dow Chemical Company
  • PPG Industries
  • The Sherwin-Williams Company
  • Akzo Nobel N.V.
  • ICA SpA
  • Axalta Coating Systems
  • Covestro AG
  • The Lubrizol Corporation
  • NEI Corporation

Table Information