Speak directly to the analyst to clarify any post sales queries you may have.
10% Free customizationThis report comes with 10% free customization, enabling you to add data that meets your specific business needs.
Despite this positive momentum, the widespread adoption of biopolymers is hindered by significant obstacles, particularly high material costs and technical limitations regarding performance in high-temperature environments compared to standard engineering plastics. To clarify the supply landscape, data from European Bioplastics indicates that global production capacity for bioplastics reached approximately 2.47 million tonnes in 2024. This relatively small scale, when viewed against the massive global plastics market, highlights the supply chain constraints that electronics manufacturers face when attempting to mass-produce components based on biopolymers.
Market Drivers
The enforcement of rigorous global environmental regulations and bans on plastics acts as a primary market driver, forcing manufacturers to fundamentally reorganize their material supply chains. As governments implement strict directives to mitigate the environmental impact of discarded electronics, the industry is swiftly transitioning from conventional petrochemical plastics toward biodegradable alternatives in response to the escalating electronic waste crisis. According to UNITAR's "Global E-waste Monitor 2024," released in March 2024, a record 62 million tonnes of e-waste was generated globally in 2022, underscoring the urgent need for sustainable material lifecycles and making compliance with evolving standards a critical operational necessity that drives investment in biopolymers for device components.Concurrently, strategic corporate shifts toward carbon neutrality and ESG compliance are accelerating the adoption of bio-based materials among leading technology firms, who are aggressively incorporating renewable materials to meet sustainability targets and consumer demands. This operational pivot is reflected in corporate performance metrics; for example, Dell Technologies' "FY24 ESG Report" from July 2024 noted the use of 487,802 kg of bioplastics, demonstrating a clear commitment to reducing reliance on fossil-based resources. This corporate momentum is supported by a broader industry increase in material availability, with European Bioplastics forecasting in 2024 that global bioplastics production capacity will grow to approximately 5.73 million tonnes by 2029 to meet the sector's expanding requirements.
Market Challenges
High material costs and technical performance limitations, specifically regarding thermal stability, represent a critical barrier to the expansion of the biopolymers market within the electrical and electronics sector. Because electronic devices generate substantial heat during operation and require materials that can withstand high temperatures during manufacturing processes like reflow soldering, current biopolymer formulations often fail to meet rigorous engineering standards without expensive modifications. This renders them significantly more expensive than established petrochemical counterparts such as polycarbonate or ABS, which provide superior durability at a lower price point.This economic and technical gap is further widened by the global industry's predominant focus on sectors with less stringent physical requirements. Data from European Bioplastics in 2024 reveals that packaging remains the largest segment, comprising 45 percent of the total bioplastics market, indicating that the bulk of production capacity and R&D investment targets materials with lower thermal prerequisites. Consequently, the specialized high-temperature biopolymers essential for electronics remain a niche category lacking the economies of scale necessary to drive down costs, forcing manufacturers to contend with premium pricing and limited material availability.
Market Trends
The development of high-temperature biopolymer substrates for printed circuit boards (PCBs) marks a critical shift away from traditional fiberglass-epoxy composites, addressing the industry's need for recyclable electronic components. Manufacturers are increasingly engineering plant-based laminates using natural fibers like flax or jute, which offer sufficient thermal stability for standard assembly while enabling efficient end-of-life metal recovery. This innovation allows the substrate to delaminate in hot water, facilitating the separation of valuable components without toxic incineration; for instance, Jiva Materials stated in a May 2025 press release for their Soluboard technology that this approach reduces carbon emissions by 67 percent compared to fiberglass alternatives, validating the commercial viability of biodegradable substrates.Simultaneously, the commercialization of bio-based casings for smartphones and laptops is advancing through the use of high-strength cellulose composites that rival the durability of engineering plastics. Technology firms are moving beyond simple bioplastic blends to develop sophisticated molding materials derived entirely from renewable resources, thereby eliminating reliance on petrochemical resins for structural housings. These next-generation materials meet strict impact resistance standards while offering complete marine biodegradability; notably, Panasonic Holdings Corporation announced in January 2025 that it successfully developed a cellulose fiber molding material with 100 percent biomass content, proving that fully renewable inputs can satisfy the mechanical requirements of consumer electronic casings.
Key Players Profiled in the Biopolymers in Electrical & Electronics Market
- Toyota Tsusho Corporation
- Saudi Basic Industries Corporation
- BASF SE
- Trinseo PLC
- Braskem SA
- TEIJIN Limited
- NatureWorks LLC
- TotalEnergies SE
- Solvay S.A.
- Futerro S.A.
Report Scope
In this report, the Global Biopolymers in Electrical & Electronics Market has been segmented into the following categories:Biopolymers in Electrical & Electronics Market, by Type:
- Biodegradable
- Non-biodegradable
Biopolymers in Electrical & Electronics Market, by Application:
- Rechargeable Batteries
- Wires & Cables
- Electrical Insulator
- Panel Displays
- Electronic Device Casings
- Others
Biopolymers in Electrical & Electronics Market, by Region:
- North America
- Europe
- Asia-Pacific
- South America
- Middle East & Africa
Competitive Landscape
Company Profiles: Detailed analysis of the major companies present in the Global Biopolymers in Electrical & Electronics Market.Available Customization
The analyst offers customization according to your specific needs. The following customization options are available for the report:- Detailed analysis and profiling of additional market players (up to five).
This product will be delivered within 1-3 business days.
Table of Contents
Companies Mentioned
The key players profiled in this Biopolymers in Electrical & Electronics market report include:- Toyota Tsusho Corporation
- Saudi Basic Industries Corporation
- BASF SE
- Trinseo PLC
- Braskem SA
- TEIJIN Limited
- NatureWorks LLC
- TotalEnergies SE
- Solvay S.A.
- Futerro S.A.
Table Information
| Report Attribute | Details |
|---|---|
| No. of Pages | 180 |
| Published | January 2026 |
| Forecast Period | 2025 - 2031 |
| Estimated Market Value ( USD | $ 82.85 Million |
| Forecasted Market Value ( USD | $ 138.57 Million |
| Compound Annual Growth Rate | 8.9% |
| Regions Covered | Global |
| No. of Companies Mentioned | 11 |


