+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Biopolymers in Electrical & Electronics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2020-2030F

  • PDF Icon

    Report

  • 184 Pages
  • February 2025
  • Region: Global
  • TechSci Research
  • ID: 5915649
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Biopolymers in Electrical & Electronics Market was valued at USD 82.85 Million in 2024, and is expected to reach USD 138.88 Million by 2030, rising at a CAGR of 8.95%. This transformation is largely driven by an increased focus on sustainability, regulatory measures, and the rising demand for eco-friendly materials.

The adoption of biopolymers within the electrical and electronics industry has accelerated due to the urgent need for sustainable alternatives. Growing environmental concerns related to conventional plastics have triggered a shift toward biodegradable and renewable materials. Biopolymers, which are sourced from renewable resources like plants and microorganisms, are becoming viable alternatives to traditional fossil fuel-based polymers.

### Key Market Drivers

#### Growing Demand for Printed Circuit Boards (PCBs)
The global market for biopolymers in the electrical and electronics (E&E) sector is expanding significantly, propelled by the demand for sustainable, high-performance materials. A primary driver of this growth is the increasing need for printed circuit boards (PCBs), which are essential for virtually all electronic devices. Biopolymers derived from renewable resources are increasingly being integrated into PCB manufacturing due to their environmental benefits, functional properties, and alignment with global sustainability initiatives.

PCBs are integral to modern electronics, providing the foundation for mounting and interconnecting electronic components. They are widely used in consumer electronics, automotive electronics, industrial equipment, and telecommunications. As electronic devices become more complex and miniaturized, the demand for advanced PCBs has grown, creating opportunities for biopolymer-based materials. The global PCB market is worth billions, driven by the proliferation of smartphones, IoT devices, and renewable energy systems. Additionally, the adoption of 5G technology and electric vehicles (EVs) is further boosting PCB production.

The electronics industry faces mounting pressure to adopt sustainable practices, given environmental concerns and stringent regulations. Traditional PCB materials, such as epoxy resins and fiberglass, are derived from petrochemicals and are non-biodegradable, contributing to the growing issue of electronic waste (e-waste). Biopolymers, sourced from renewable inputs like corn starch, sugarcane, and cellulose, offer a sustainable alternative. E-waste is one of the fastest-growing segments of global solid waste, with around 62 million tonnes generated in 2022, though only 22.3% of this waste was effectively recycled.

There is a noticeable shift toward flexible and biodegradable PCBs, driven by the demand for lightweight, compact, and environmentally friendly devices. Biopolymers are ideal for these applications due to their flexibility, biodegradability, and ability to be processed into thin films. Flexible PCBs are increasingly used in wearable devices, foldable smartphones, and medical equipment. The global flexible electronics market is expected to see significant growth, creating further opportunities for biopolymer-based materials. Consumer and regulatory demands for greener electronics are pushing manufacturers to adopt eco-friendly materials like biopolymers. European regulations, such as RoHS and WEEE, are accelerating the adoption of sustainable materials in PCB production, with the European Union's goal of a circular economy by 2050 further promoting the use of renewable resources.

### Key Market Challenges

#### High Production Costs of Biopolymers
The high cost of biopolymers remains a significant challenge to the growth of the global biopolymers market in the electrical and electronics sector. Despite their eco-friendly advantages, the production costs of biopolymers are relatively high, making widespread adoption difficult, particularly in price-sensitive industries like electronics. The cost issues stem from the complex processes involved in sourcing bio-based feedstocks, refining, and manufacturing biopolymers to meet industry standards. The price disparity between biopolymers and conventional polymers is a key deterrent, limiting market expansion. Overcoming this challenge will require focused efforts in research and development to streamline production processes, find cost-effective sourcing methods, and scale manufacturing capabilities.

### Key Market Trends

#### Increasing Use of Biopolymers in Packaging
The global biopolymers market in the electrical and electronics industry is undergoing a notable shift, with an increasing use of biopolymers in packaging. This trend is a response to growing environmental awareness and the demand for eco-friendly packaging solutions. Biopolymers, derived from renewable resources like plants and microorganisms, offer a sustainable alternative to traditional petroleum-based plastics. For example, companies are incorporating biopolymer-based films and foams from sources like corn starch and sugarcane into the packaging of electronic devices. These materials not only offer effective protection for sensitive electronic components but also help reduce the overall environmental impact of electronic products.

The growing emphasis on sustainable, recyclable packaging materials aligns with consumer preferences and is driving demand for biopolymers in the electrical and electronics sector. Additionally, biopolymers often exhibit beneficial properties such as biodegradability, flexibility, and light weight, making them suitable for various industry applications. As consumer electronics manufacturers increasingly highlight the eco-friendliness of their products, the use of biopolymers in packaging is expected to become a key factor propelling the growth of the global market for biopolymers in electrical and electronics. This trend not only reflects a commitment to sustainable practices but also positions biopolymers as a crucial element in the evolution of packaging solutions in the industry.

Key Market Players

  • Toyota Tsusho Corporation
  • Saudi Basic Industries Corporation (SABIC)
  • BASF SE
  • Trinseo PLC
  • Braskem SA
  • TEIJIN Limited
  • NatureWorks LLC
  • TotalEnergies Corbion bv
  • Solvay
  • Futerro

Report Scope:

In this report, the Global Biopolymers in Electrical & Electronics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Biopolymers in Electrical & Electronics Market, By Type:

  • Biodegradable
  • Non-biodegradable

Biopolymers in Electrical & Electronics Market, By Application:

  • Rechargeable Batteries
  • Wires & Cables
  • Electrical Insulator
  • Panel Displays
  • Electronic Device Casings
  • Others

Biopolymers in Electrical & Electronics Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey
  • Egypt

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Biopolymers in Electrical & Electronics Market.

Available Customizations:

With the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report.

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Impact of COVID-19 on Global Biopolymers in Electrical & Electronics Market5. Voice of Customer
6. Global Biopolymers in Electrical & Electronics Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value & Volume
6.2. Market Share & Forecast
6.2.1. By Type (Biodegradable, Non-biodegradable),
6.2.2. By Application (Rechargeable Batteries, Wires & Cables, Electrical Insulator, Panel Displays, Electronic Device Casings, and Others)
6.2.3. By Region
6.2.4. By Company (2024)
6.3. Market Map
7. Asia Pacific Biopolymers in Electrical & Electronics Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value & Volume
7.2. Market Share & Forecast
7.2.1. By Type
7.2.2. By Application
7.2.3. By Country
7.3. Asia Pacific: Country Analysis
7.3.1. China Biopolymers in Electrical & Electronics Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value & Volume
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Type
7.3.1.2.2. By Application
7.3.2. India Biopolymers in Electrical & Electronics Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value & Volume
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Type
7.3.2.2.2. By Application
7.3.3. Australia Biopolymers in Electrical & Electronics Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value & Volume
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Type
7.3.3.2.2. By Application
7.3.4. Japan Biopolymers in Electrical & Electronics Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value & Volume
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Type
7.3.4.2.2. By Application
7.3.5. South Korea Biopolymers in Electrical & Electronics Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value & Volume
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Type
7.3.5.2.2. By Application
8. Europe Biopolymers in Electrical & Electronics Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value & Volume
8.2. Market Share & Forecast
8.2.1. By Type
8.2.2. By Application
8.2.3. By Country
8.3. Europe: Country Analysis
8.3.1. France Biopolymers in Electrical & Electronics Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value & Volume
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Type
8.3.1.2.2. By Application
8.3.2. Germany Biopolymers in Electrical & Electronics Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value & Volume
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Type
8.3.2.2.2. By Application
8.3.3. Spain Biopolymers in Electrical & Electronics Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value & Volume
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Type
8.3.3.2.2. By Application
8.3.4. Italy Biopolymers in Electrical & Electronics Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value & Volume
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Type
8.3.4.2.2. By Application
8.3.5. United Kingdom Biopolymers in Electrical & Electronics Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value & Volume
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Type
8.3.5.2.2. By Application
9. North America Biopolymers in Electrical & Electronics Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value & Volume
9.2. Market Share & Forecast
9.2.1. By Type
9.2.2. By Application
9.2.3. By Country
9.3. North America: Country Analysis
9.3.1. United States Biopolymers in Electrical & Electronics Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value & Volume
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Type
9.3.1.2.2. By Application
9.3.2. Mexico Biopolymers in Electrical & Electronics Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value & Volume
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Type
9.3.2.2.2. By Application
9.3.3. Canada Biopolymers in Electrical & Electronics Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value & Volume
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Type
9.3.3.2.2. By Application
10. South America Biopolymers in Electrical & Electronics Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value & Volume
10.2. Market Share & Forecast
10.2.1. By Type
10.2.2. By Application
10.2.3. By Country
10.3. South America: Country Analysis
10.3.1. Brazil Biopolymers in Electrical & Electronics Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value & Volume
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Type
10.3.1.2.2. By Application
10.3.2. Argentina Biopolymers in Electrical & Electronics Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value & Volume
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Type
10.3.2.2.2. By Application
10.3.3. Colombia Biopolymers in Electrical & Electronics Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value & Volume
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Type
10.3.3.2.2. By Application
11. Middle East and Africa Biopolymers in Electrical & Electronics Market Outlook
11.1. Market Size & Forecast
11.1.1. By Value & Volume
11.2. Market Share & Forecast
11.2.1. By Type
11.2.2. By Application
11.2.3. By Country
11.3. MEA: Country Analysis
11.3.1. South Africa Biopolymers in Electrical & Electronics Market Outlook
11.3.1.1. Market Size & Forecast
11.3.1.1.1. By Value & Volume
11.3.1.2. Market Share & Forecast
11.3.1.2.1. By Type
11.3.1.2.2. By Application
11.3.2. Saudi Arabia Biopolymers in Electrical & Electronics Market Outlook
11.3.2.1. Market Size & Forecast
11.3.2.1.1. By Value & Volume
11.3.2.2. Market Share & Forecast
11.3.2.2.1. By Type
11.3.2.2.2. By Application
11.3.3. UAE Biopolymers in Electrical & Electronics Market Outlook
11.3.3.1. Market Size & Forecast
11.3.3.1.1. By Value & Volume
11.3.3.2. Market Share & Forecast
11.3.3.2.1. By Type
11.3.3.2.2. By Application
11.3.4. Kuwait Biopolymers in Electrical & Electronics Market Outlook
11.3.4.1. Market Size & Forecast
11.3.4.1.1. By Value & Volume
11.3.4.2. Market Share & Forecast
11.3.4.2.1. By Type
11.3.4.2.2. By Application
11.3.5. Turkey Biopolymers in Electrical & Electronics Market Outlook
11.3.5.1. Market Size & Forecast
11.3.5.1.1. By Value & Volume
11.3.5.2. Market Share & Forecast
11.3.5.2.1. By Type
11.3.5.2.2. By Application
11.3.6. Egypt Biopolymers in Electrical & Electronics Market Outlook
11.3.6.1. Market Size & Forecast
11.3.6.1.1. By Value & Volume
11.3.6.2. Market Share & Forecast
11.3.6.2.1. By Type
11.3.6.2.2. By Application
12. Market Dynamics
12.1. Drivers
12.2. Challenges
13. Market Trends and Developments
13.1. Recent Developments
13.2. Product Launches
13.3. Mergers & Acquisitions
14. Global Biopolymers in Electrical & Electronics Market: SWOT Analysis15. Pricing Analysis
16. Porter’s Five Forces Analysis
16.1. Competition in the industry
16.2. Potential of New Entrants
16.3. Power of Suppliers
16.4. Power of Customers
16.5. Threat of Substitute Product
17. PESTLE Analysis
18. Competitive Landscape
18.1. Toyota Tsusho Corporation
18.1.1. Business Overview
18.1.2. Product & Service Offerings
18.1.3. Recent Developments
18.1.4. Financials (If Listed)
18.1.5. Key Personnel
18.1.6. SWOT Analysis
18.2. Saudi Basic Industries Corporation (SABIC)
18.3. BASF SE
18.4. Trinseo PLC
18.5. Braskem SA
18.6. TEIJIN Limited
18.7. NatureWorks LLC
18.8. TotalEnergies Corbion bv
18.9. Solvay
18.10. Futerro
19. Strategic Recommendations20. About the Publisher & Disclaimer

Companies Mentioned

  • Toyota Tsusho Corporation
  • Saudi Basic Industries Corporation (SABIC)
  • BASF SE
  • Trinseo PLC
  • Braskem SA
  • TEIJIN Limited
  • NatureWorks LLC
  • TotalEnergies Corbion bv
  • Solvay
  • Futerro

Table Information