+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Tissue Engineering and Regeneration Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2020-2030F

  • PDF Icon

    Report

  • 182 Pages
  • March 2025
  • Region: Global
  • TechSci Research
  • ID: 5921757
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Tissue Engineering and Regeneration Market was valued at USD 14.57 Billion in 2024, and is expected to reach USD 23.39 Billion by 2030, rising at a CAGR of 8.35%. Tissue Engineering and Regeneration are fields of biomedical science and engineering that focus on the development of biological substitutes to repair or replace damaged or diseased tissues and organs in the human body. These fields aim to restore normal tissue function, promote healing, and improve the quality of life for patients suffering from a wide range of medical conditions. Tissue engineering is the science and practice of creating functional and living tissues or organs using a combination of cells, biomaterials, and biochemical factors.

Key Market Drivers

High Demand for Organ Transplants

The demand for organ transplants far exceeds the supply of available donor organs. This shortage of organs for transplantation has led to long waiting lists, and many patients may not receive a transplant in time. Tissue engineering offers a potential solution to address this organ shortage by creating lab-grown organs and tissues. Tissue engineering and regenerative medicine techniques involve growing functional organs and tissues in the laboratory using a patient's cells or other biocompatible materials. This approach provides an alternative source of organs for transplantation, reducing the dependence on donor organs. Tissue engineering allows for the creation of personalized organs that can be tailored to individual patients.

This reduces the risk of organ rejection and the need for long-term immunosuppressive medications, which are necessary in traditional organ transplantation. Tissue engineering can create organs that are traditionally challenging to obtain from donors, such as vascularized organs, like hearts and kidneys. This expands the range of available organs for transplantation. In January 2023, a research team led by Dr. Hasan Erbil Abaci at Columbia University began developing techniques to create 3D-engineered skin customized for complex body parts. These tailored grafts can be transplanted with minimal suturing, improving surgical efficiency and outcomes.

Key Market Challenges

Long and Expensive Development Process

The development of regenerative therapies begins with extensive research and preclinical testing to understand the safety and efficacy of the proposed treatments. This stage can take many years and involve substantial financial resources. Clinical trials are a critical step in the development process to demonstrate the safety and effectiveness of regenerative therapies in humans. Conducting these trials involves a substantial investment, takes several years, and requires compliance with stringent regulatory requirements. Obtaining regulatory approvals from agencies like the U.S. Food and Drug Administration (FDA) or the European Medicines Agency (EMA) is a lengthy and costly process.

Companies must meet rigorous standards and provide comprehensive data to prove the safety and efficacy of their therapies. Transitioning from small-scale laboratory production to large-scale manufacturing can be challenging. Ensuring consistent and cost-effective production of regenerative therapies is a complex task. Maintaining quality control and standardization throughout the manufacturing process is crucial. Deviations can lead to product inconsistency and may pose risks to patient safety.

The development of regenerative therapies requires substantial financial resources, including funding for research, clinical trials, manufacturing facilities, and regulatory compliance. Raising this capital can be a barrier to entry for startups and smaller companies. Many regenerative therapies do not successfully make it to market. The high failure rate in clinical trials and the lengthy timelines contribute to the overall cost of development. The long development process can result in market uncertainties. By the time a therapy reaches the market, changes in the competitive landscape or evolving clinical standards can impact its commercial success.

Key Market Trends

Personalized Medicine

Tissue engineering and regenerative medicine aim to create therapies that are customized to each patient's unique needs. This approach can address individual variations in health, genetics, and disease. Induced pluripotent stem cells (iPSCs) are reprogrammed from a patient's own cells and can be used to generate patient-specific tissues and organs. This minimizes the risk of immune rejection and graft-versus-host disease. Advancements in genomics and molecular profiling allow for a detailed analysis of a patient's genetic and molecular characteristics. This information is used to guide treatment decisions and tailor regenerative therapies.

iPSCs and patient-derived cells are used to create disease models, enabling researchers to study diseases in a patient-specific context. This is valuable for understanding disease mechanisms and testing potential treatments. Personalized regenerative therapies reduce the risk of immune rejection, as they are based on the patient's own cells. This minimizes the need for immunosuppressive drugs. By understanding a patient's genetic and molecular profile, clinicians can optimize the choice of tissue engineering and regenerative therapies.

This ensures that the treatment is more likely to be effective and safe for the individual patient. Personalized medicine allows clinicians to predict a patient's response to specific therapies, helping to select the most appropriate regenerative approach for a better outcome. Personalized medicine places the patient at the center of care, emphasizing tailored treatments that consider the patient's unique biology, preferences, and needs. In some cases, companion diagnostics are used to identify the most suitable regenerative therapy for a patient based on their genetic or molecular profile.

Key Market Players

  • Organogenesis Inc.
  • Acelity L.P. Inc.
  • Zimmer Biomet Holdings Inc.
  • Stryker Corporation
  • Integra LifeSciences Holdings Corporation
  • Medtronic plc
  • Smith & Nephew plc
  • Athersys Inc.
  • Vericel Corporation
  • Osiris Therapeutics, Inc.

Report Scope:

In this report, the Global Tissue Engineering and Regeneration Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Tissue Engineering and Regeneration Market, By Product:

  • Biomaterials
  • Cell Therapy
  • Tissue Engineering

Tissue Engineering and Regeneration Market, By Application:

  • Orthopedics
  • Dermatology
  • Cardiology
  • Neurology
  • Others

Tissue Engineering and Regeneration Market, By region:

  • North America
  • United States
  • Canada
  • Mexico
  • Asia-Pacific
  • China
  • India
  • South Korea
  • Australia
  • Japan
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Italy
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Tissue Engineering and Regeneration Market.

Available Customizations:

With the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report.

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Voice of Customer
5. Global Tissue Engineering and Regeneration Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Product (Biomaterials, Cell Therapy, Tissue Engineering)
5.2.2. By Application (Orthopedics, Dermatology, Cardiology, Neurology, Others)
5.2.3. By Region
5.2.4. By Company (2024)
5.3. Market Map
6. Asia Pacific Tissue Engineering and Regeneration Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Product
6.2.2. By Application
6.2.3. By Country
6.3. Asia Pacific: Country Analysis
6.3.1. China Tissue Engineering and Regeneration Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Product
6.3.1.2.2. By Application
6.3.2. India Tissue Engineering and Regeneration Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Product
6.3.2.2.2. By Application
6.3.3. Australia Tissue Engineering and Regeneration Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Product
6.3.3.2.2. By Application
6.3.4. Japan Tissue Engineering and Regeneration Market Outlook
6.3.4.1. Market Size & Forecast
6.3.4.1.1. By Value
6.3.4.2. Market Share & Forecast
6.3.4.2.1. By Product
6.3.4.2.2. By Application
6.3.5. South Korea Tissue Engineering and Regeneration Market Outlook
6.3.5.1. Market Size & Forecast
6.3.5.1.1. By Value
6.3.5.2. Market Share & Forecast
6.3.5.2.1. By Product
6.3.5.2.2. By Application
7. Europe Tissue Engineering and Regeneration Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Product
7.2.2. By Application
7.2.3. By Country
7.3. Europe: Country Analysis
7.3.1. France Tissue Engineering and Regeneration Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Product
7.3.1.2.2. By Application
7.3.2. Germany Tissue Engineering and Regeneration Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Product
7.3.2.2.2. By Application
7.3.3. Spain Tissue Engineering and Regeneration Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Product
7.3.3.2.2. By Application
7.3.4. Italy Tissue Engineering and Regeneration Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Product
7.3.4.2.2. By Application
7.3.5. United Kingdom Tissue Engineering and Regeneration Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Product
7.3.5.2.2. By Application
8. North America Tissue Engineering and Regeneration Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Product
8.2.2. By Application
8.2.3. By Country
8.3. North America: Country Analysis
8.3.1. United States Tissue Engineering and Regeneration Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Product
8.3.1.2.2. By Application
8.3.2. Mexico Tissue Engineering and Regeneration Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Product
8.3.2.2.2. By Application
8.3.3. Canada Tissue Engineering and Regeneration Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Product
8.3.3.2.2. By Application
9. South America Tissue Engineering and Regeneration Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Product
9.2.2. By Application
9.2.3. By Country
9.3. South America: Country Analysis
9.3.1. Brazil Tissue Engineering and Regeneration Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Product
9.3.1.2.2. By Application
9.3.2. Argentina Tissue Engineering and Regeneration Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Product
9.3.2.2.2. By Application
9.3.3. Colombia Tissue Engineering and Regeneration Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Product
9.3.3.2.2. By Application
10. Middle East and Africa Tissue Engineering and Regeneration Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Product
10.2.2. By Application
10.2.3. By Country
10.3. MEA: Country Analysis
10.3.1. South Africa Tissue Engineering and Regeneration Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Product
10.3.1.2.2. By Application
10.3.2. Saudi Arabia Tissue Engineering and Regeneration Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Product
10.3.2.2.2. By Application
10.3.3. UAE Tissue Engineering and Regeneration Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Product
10.3.3.2.2. By Application
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
12.1. Recent Developments
12.2. Product Launches
12.3. Mergers & Acquisitions
13. Global Tissue Engineering and Regeneration Market: SWOT Analysis
14. Porter’s Five Forces Analysis
14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Product
15. PESTLE Analysis
16. Competitive Landscape
16.1. Organogenesis Inc.
16.1.1. Business Overview
16.1.2. Company Snapshot
16.1.3. Products & Services
16.1.4. Financials (In case of listed companies)
16.1.5. Recent Developments
16.1.6. SWOT Analysis
16.2. Acelity L.P. Inc
16.2.1. Business Overview
16.2.2. Company Snapshot
16.2.3. Products & Services
16.2.4. Financials (In case of listed companies)
16.2.5. Recent Developments
16.2.6. SWOT Analysis
16.3. Zimmer Biomet Holdings Inc.
16.3.1. Business Overview
16.3.2. Company Snapshot
16.3.3. Products & Services
16.3.4. Financials (In case of listed companies)
16.3.5. Recent Developments
16.3.6. SWOT Analysis
16.4. Stryker Corporation
16.4.1. Business Overview
16.4.2. Company Snapshot
16.4.3. Products & Services
16.4.4. Financials (In case of listed companies)
16.4.5. Recent Developments
16.4.6. SWOT Analysis
16.5. Integra LifeSciences Holdings Corporation
16.5.1. Business Overview
16.5.2. Company Snapshot
16.5.3. Products & Services
16.5.4. Financials (In case of listed companies)
16.5.5. Recent Developments
16.5.6. SWOT Analysis
16.6. Medtronic plc
16.6.1. Business Overview
16.6.2. Company Snapshot
16.6.3. Products & Services
16.6.4. Financials (In case of listed companies)
16.6.5. Recent Developments
16.6.6. SWOT Analysis
16.7. Smith & Nephew plc
16.7.1. Business Overview
16.7.2. Company Snapshot
16.7.3. Products & Services
16.7.4. Financials (In case of listed companies)
16.7.5. Recent Developments
16.7.6. SWOT Analysis
16.8. Athersys Inc.
16.8.1. Business Overview
16.8.2. Company Snapshot
16.8.3. Products & Services
16.8.4. Financials (In case of listed companies)
16.8.5. Recent Developments
16.8.6. SWOT Analysis
16.9. Vericel Corporation
16.9.1. Business Overview
16.9.2. Company Snapshot
16.9.3. Products & Services
16.9.4. Financials (In case of listed companies)
16.9.5. Recent Developments
16.9.6. SWOT Analysis
16.10. Osiris Therapeutics, Inc.
16.10.1. Business Overview
16.10.2. Company Snapshot
16.10.3. Products & Services
16.10.4. Financials (In case of listed companies)
16.10.5. Recent Developments
16.10.6. SWOT Analysis
17. Strategic Recommendations18. About the Publisher & Disclaimer

Companies Mentioned

  • Organogenesis Inc.
  • Acelity L.P. Inc.
  • Zimmer Biomet Holdings Inc.
  • Stryker Corporation
  • Integra LifeSciences Holdings Corporation
  • Medtronic plc
  • Smith & Nephew plc
  • Athersys Inc.
  • Vericel Corporation
  • Osiris Therapeutics, Inc.

Table Information