+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Electrochemical Energy Storage Devices. Non-Conventional Technologies and Materials. Edition No. 1

  • Book

  • 352 Pages
  • April 2025
  • John Wiley and Sons Ltd
  • ID: 5928355
Systematic and insightful overview of various novel energy storage devices beyond alkali metal ion batteries for academic and industry

Electrochemical Energy Storage Devices delivers a comprehensive review of promising energy storage devices with the potential for higher energy and power density, longer lifetime cycle, better safety performance, and lower costs and environmental footprint compared to traditional lithium-ion batteries.

The book covers the fundamentals of energy storage devices and key materials (cathode, anode, and electrolyte) and discusses advanced characterization techniques to allow for further improvement of their electrochemical performance. Current challenges and future outlooks in the field are also discussed.

Written by a highly qualified academic with significant research experience in the field, Electrochemical Energy Storage Devices includes information on sample topics including: - Mechanisms and promising cathode catalysts for metal air batteries and mechanisms and advanced materials for metal-CO2 batteries - Magnesium-based and other types of multivalent-ion batteries and M/N/C catalysts for fuel cells - Developments and prospects of aqueous batteries and progress and perspectives of material design and engineering in flow batteries - Rechargeable lithium-sulfur batteries, dual-ion batteries, hybrid capacitors, and flexible energy storage devices

Explaining working mechanisms and laying the groundwork for innovative optimization strategies, Electrochemical Energy Storage Devices is an essential reference on the subject for materials scientists and chemists.

Table of Contents

Preface xi

1 Introduction 1
Qingguang Pan and Yongbing Tang

1.1 Introduction 1

1.2 New Energy Storage Devices 3

1.2.1 Metal-Air Batteries 3

1.2.2 Li-S Batteries 4

1.2.3 Metal-CO2 Batteries 5

1.2.4 Multivalent-Ion Batteries 6

1.2.5 Dual-Ion Batteries 7

1.2.6 Fuel Cells 8

1.2.7 Aqueous Batteries 9

1.2.8 Flow Batteries 11

1.2.9 Hybrid Capacitors 12

1.2.10 Flexible Energy Storage Devices 13

1.3 Conclusion 14

References 15

2 Mechanisms and Promising Cathode Catalysts for Metal-Air Batteries 27
Tao Zhang and Zhiqian Hou

2.1 Introduction 27

2.2 Overview of Metal-Air Batteries 27

2.2.1 Reaction Mechanism of Metal-Air Batteries 28

2.2.2 Design of the Cathode Catalysts 30

2.2.2.1 Carbon-Based Catalysts 31

2.2.2.2 Noncarbon Catalysts 38

2.2.3 Li/Na/Zn-CO2 Batteries 39

2.2.4 Li-N2 Batteries 42

2.2.5 Solid Li/Zn-Air Batteries 43

2.2.6 Sealed Li/Zn-O2 Batteries 44

2.3 Summary and Outlook 45

References 46

3 Rechargeable Lithium-Sulfur Batteries 55
Girum Girma Bizuneh, Fang Li, Abdullah N. Alodhayb, and Jianmin Ma

3.1 Background 55

3.2 Components and Mechanism of Lithium-Sulfur Batteries 56

3.3 The Existing Challenges of Li-S battery 57

3.4 Sulfur Cathode 58

3.4.1 Carbon Materials for Sulfur Cathode 59

3.4.1.1 Porous Carbons as a Sulfur Host 59

3.4.1.2 Graphene-Supported Sulfur Cathodes 60

3.4.2 Inorganic-Based Structures for Hosting Sulfur 63

3.4.2.1 Inorganic Sulfides 64

3.4.2.2 Inorganic Oxides 65

3.4.2.3 Inorganic Nitrides 65

3.4.2.4 Lithium Sulfide 67

3.5 Lithium Anode 68

3.5.1 Challenges with Li Metal Anode 69

3.5.2 Strategies Enabling Li Metal Anode 69

3.5.2.1 SEI Layer Construction by Electrolyte Additives 69

3.5.2.2 SEI Layer Construction by Artificial Engineering 70

3.6 Aprotic Electrolytes for Li-S Batteries 72

3.6.1 Carbonate Electrolytes 73

3.6.2 Ether Electrolytes 73

3.6.3 Mixed Solvent Electrolytes 74

3.7 Separators and Functional Interlayers 74

3.8 Conclusion and Perspective 76

References 77

4 Metal-CO 2 Batteries: Mechanisms and Advanced Materials 91
Chang Guo, Keyu Xie, and Xiao Han

4.1 Introduction 91

4.2 The Electrochemistry Mechanism of Metal-CO2 Battery 92

4.2.1 Discharge/Charge Mechanisms of Li-CO2 Battery 93

4.2.1.1 Discharge Mechanisms of Li-CO2 Battery 93

4.2.1.2 Charge Mechanisms of Li-CO2 Battery 95

4.2.2 Discharge/Charge Mechanisms of Na-CO2 Battery 98

4.2.3 Discharge/Charge Mechanisms of K-CO2 Battery 99

4.2.4 Discharge/Charge Mechanisms of Mg-CO2 Battery 100

4.2.5 Discharge/Charge Mechanisms of Zn-CO2 Battery 102

4.2.6 Discharge/Charge Mechanisms of Al-CO2 Battery 103

4.3 The Cathode Materials of Metal-CO2 Battery 105

4.3.1 Carbon-Based Catalysis and Additive Catalysis 105

4.3.2 Noble Metal-Based Catalysis 107

4.3.3 Transition Metal-Based Catalysts 109

4.3.4 Porous Framework-Based Catalysts 110

4.4 The Electrolyte of Metal-CO2 Battery 111

4.4.1 The Nonaqueous Liquid Electrolyte 111

4.4.2 The Aqueous Electrolyte 112

4.4.3 The Solid-State Electrolyte 113

4.5 Summary and Outlook 114

References 115

5 Multivalent-Ion Batteries: Magnesium and Beyond 121
Qirong Liu and Yongbing Tang

5.1 Electrolyte Chemistry of Multivalent-Ion Batteries 124

5.2 Intercalation Chemistry of Multivalent-Ion Batteries 127

5.2.1 Diffusion Channel Engineering 127

5.2.2 Delocalizing Electronic Structure 129

5.2.3 Properly Shielding Charges of Multivalent Carriers 131

5.3 Interfacial Chemistry of Multivalent-Ion Batteries 133

5.4 Concluding Remarks 136

References 137

6 Dual-Ion Batteries: Materials and Mechanisms 143
Luojiang Zhang and Yongbing Tang

6.1 Introduction 143

6.2 Cathode Materials 146

6.2.1 Carbon Cathode Materials 147

6.2.1.1 Graphite Materials 147

6.2.1.2 Other Carbon Materials 149

6.2.2 Organic Cathode Materials 150

6.2.3 Other Cathode Materials 152

6.3 Anode Materials 153

6.3.1 Metallic Anode Materials 153

6.3.2 Intercalation Anode Materials 154

6.3.3 Alloying Anode Materials 155

6.3.4 Conversion Anode Materials 156

6.3.5 Other Anode Materials 157

6.4 Electrolytes 158

6.4.1 Organic Electrolytes 158

6.4.2 Ionic Liquid Electrolytes 160

6.4.3 Aqueous Electrolytes 161

6.4.4 Gel Polymer Electrolytes 162

6.5 Conclusion and Prospects 163

References 164

7 M-N-C Catalysts for Fuel Cells 171
Xiao Zhao

7.1 Introduction 171

7.2 Synthesis and Characterizations of M-N-C Catalysts 172

7.2.1 Pyrolysis 172

7.2.2 CVD 174

7.2.3 Cs-TEM 175

7.2.4 XAS 175

7.2.5 RDE and MEA 176

7.3 Fe-N-C-Based Catalysts 177

7.3.1 Understanding of the Nature of Fe-N-C Active Sites 177

7.3.2 Engineering Fen X Active Sites 179

7.3.2.1 Engineering Coordination Environment of Fe Centers 179

7.3.2.2 Improving Metal Loading and Site Density 181

7.3.2.3 Creating the Porosity and Improving Site Utilization 181

7.4 Non-Fe Metal Centers 183

7.5 Dual- and Multimetallic SACs 185

7.6 Durability of M-N-C Catalysts 186

7.7 Perspective 188

References 190

8 Developments and Prospects of Aqueous Batteries 203
Shuo Yang, Shengmei Chen, and Chunyi Zhi

8.1 Introduction 203

8.2 Aqueous Batteries Based on Monovalent Metal Ions 204

8.2.1 Aqueous LIBs 204

8.2.2 Aqueous Na-Ion Batteries (NIBs) 206

8.2.3 Aqueous K-Ion Batteries (KIBs) 207

8.3 Aqueous Batteries Based on Multivalent Metal Ions 208

8.3.1 Aqueous Zn-Based Batteries (ZBs) 208

8.3.1.1 Alkaline ZBs 208

8.3.1.2 Neutral ZIBs 209

8.3.2 Other Aqueous Multivalent Metal-Ion Batteries 212

8.4 Aqueous Batteries Based on Nonmetallic Ions 214

8.4.1 Aqueous Proton (H +)Batteries 214

8.4.2 Aqueous Ammonium-Ion (NH + 4)Batteries 217

8.4.3 Aqueous Anion-Based Batteries (ABs) 218

8.5 Challenges and Solutions of Aqueous Batteries 219

8.5.1 Water Decomposition 219

8.5.2 Dendrite Growth 220

8.5.3 Side Reactions 221

8.6 Conclusions and Future Perspectives 221

References 222

9 Progress and Perspectives of Flow Batteries: Material Design and Engineering 231
Mengqi Zhang, Changkun Zhang, Xianfeng Li, and Guihua Yu

9.1 Introduction 231

9.2 Research Progress on the Electrolyte 233

9.2.1 Vfb 233

9.2.2 Zinc-Bromine FB 233

9.2.2.1 Suppress the Formation and Growth of Zn Dendrites 234

9.2.2.2 Suppress the Self-Discharge 234

9.2.3 Zinc-Iron FB 235

9.2.4 All-Iron FBs 236

9.2.5 Aqueous Organic FBs 238

9.2.5.1 Ferrocene Derivatives 238

9.2.5.2 TEMPO Derivatives 238

9.2.5.3 Viologen Derivatives 239

9.2.5.4 Quinone Derivatives 240

9.2.5.5 Heterocyclic Aromatics 241

9.2.6 Nonaqueous FBs 242

9.3 Research Progress on the Membrane 243

9.3.1 Ion-Exchange Membranes 243

9.3.2 Porous Membranes 244

9.4 Electrodes and Bipolar Plates 247

9.4.1 Electrodes 247

9.4.2 Bipolar Plates 248

9.5 Other Novel FBs 249

9.5.1 The Semisolid FBs (SSFBs) 249

9.5.2 The Redox-Targeting-Based FB 249

9.6 FB Systems and Applications 250

9.7 Conclusions and Remaining Challenges 251

References 251

10 Hybrid Capacitor 263
Lin Liu, Tianyi Wang, Hong Gao, Chengyin Wang, and Guoxiu Wang

10.1 Introduction 263

10.2 The Formation, Energy Storage Mechanism, and Performance Evaluation of Hybrid Capacitor 265

10.2.1 The Compositions of Hybrid Capacitor 265

10.2.1.1 Anode and Cathode 265

10.2.1.2 Electrolytes 265

10.2.1.3 Separator 266

10.2.1.4 Current Collectors 267

10.2.1.5 Sealants 267

10.2.2 Energy Storage Principles of Hybrid Capacitors 267

10.2.3 Performance Evaluation of Hybrid Capacitor 268

10.2.3.1 Capacitance 270

10.2.3.2 Steady Operating Voltage Window 270

10.2.3.3 Resistance 271

10.2.3.4 Energy Density and Power Density 272

10.2.3.5 Cycle Life 272

10.3 Recent Advances in Hybrid Capacitors 273

10.3.1 Hybrid Capacitors with Composite Electrodes 273

10.3.2 Hybrid Capacitors with Redox-Asymmetric Electrodes 278

10.3.3 Hybrid Capacitors with Battery-Type Electrodes 282

10.4 Conclusion 289

References 289

11 Flexible Energy Storage Devices 299
Chuan Xie and Zijian Zheng

11.1 Introduction of FLBs 300

11.1.1 Mechanical Foundation of ESDs with a Multilayer-Stacking Configuration 300

11.1.2 Pathway and Research Strategies of the FLBs 301

11.1.2.1 FLBs with Soft Structure 302

11.1.2.2 FLBs with Soft Materials 303

11.2 Materials and Structures for Achieving High-Performance FLBs 304

11.2.1 Flexible Current Collectors 304

11.2.1.1 Conductive Nanomaterials 304

11.2.1.2 Metal Composites 306

11.2.2 Flexible Electrodes 306

11.2.2.1 Freestanding Electrodes Based on Polymeric Binders 307

11.2.2.2 Flexible Electrodes Based on Binder-Free Techniques 309

11.2.2.3 Textile Composite Electrodes 309

11.2.3 Flexible Solid-State Electrolytes (SSEs) 310

11.2.3.1 Solid Polymer Electrolytes (SPEs) and Gel Polymer Electrolytes (GPEs) 310

11.2.3.2 Aqueous Gel Polymer Electrolytes 311

11.2.3.3 Hybrid SSEs 311

11.2.3.4 Interface Issues of the Solid-State Batteries 312

11.2.4 Flexible Configuration of Batteries 313

11.2.4.1 Novel Configurations of FLBs 313

11.2.4.2 1D Fiber-Shaped FLBs 313

11.3 Challenges and Perspectives 314

11.3.1 Lack of Standard Testing and Evaluation Method 314

11.3.1.1 FOM of FLBs 314

11.3.1.2 Durability, Wearability, and Comfortableness of FLBs 315

11.3.2 Challenge of High Energy Density 316

11.3.2.1 The Heavy Packaging Materials 316

11.3.2.2 Novel Electrode Materials with High Specific Capacity 316

References 318

Index 327

 

Authors

Yongbing Tang Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS), China. Luojiang Zhang Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS), China.