+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Commercial Aircraft NextGen Avionics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2019-2029F

  • PDF Icon

    Report

  • 180 Pages
  • April 2024
  • Region: Global
  • TechSci Research
  • ID: 5950319
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Global Commercial Aircraft NextGen Avionics Marketsize reached USD 5.33 Billion in 2023 and is expected to grow with a CAGR of 6.84% in the forecast period.The Global Commercial Aircraft NextGen Avionics Market is at the forefront of the aviation industry's technological evolution, ushering in a new era of advanced cockpit and communication systems. Next-generation avionics represent a paradigm shift, encompassing state-of-the-art technologies designed to enhance safety, efficiency, and operational capabilities in commercial aircraft. These avionics systems integrate cutting-edge features such as advanced flight management systems, synthetic vision, improved communication and navigation tools, and enhanced connectivity.

Key drivers fueling the market's growth include the aviation industry's continuous pursuit of safety improvements and operational efficiency. NextGen avionics contribute to safer flight operations through advanced navigation and surveillance capabilities, reducing the risk of accidents and enhancing overall situational awareness for pilots. Airlines and aircraft operators are increasingly adopting these avionics solutions to comply with evolving regulatory requirements, such as performance-based navigation standards, contributing to the modernization of global air traffic management systems.

Technological trends shaping the market include the integration of advanced communication and connectivity solutions, enabling real-time data exchange between aircraft and ground-based systems. Enhanced connectivity supports improved operational efficiency, maintenance monitoring, and passenger services. The adoption of data-centric solutions and predictive analytics further optimizes aircraft performance, contributing to fuel efficiency and reducing operational costs.

Regional insights underscore North America's prominence in driving the Global Commercial Aircraft NextGen Avionics Market. The region, led by major aerospace manufacturers and technology innovators, is a hub for avionics development and implementation. Collaborations between industry stakeholders and regulatory bodies, such as the Federal Aviation Administration (FAA), play a crucial role in shaping the regulatory landscape and facilitating the integration of NextGen avionics across commercial aircraft fleets.

Overall, the Global Commercial Aircraft NextGen Avionics Market represents a transformative wave in the aviation industry, driven by safety imperatives, regulatory requirements, and the quest for operational excellence. The integration of advanced technologies not only enhances the capabilities of commercial aircraft but also contributes to a more interconnected and efficient global aviation ecosystem.

Key Market Drivers

Enhanced Safety Standards

A primary driver for the Global Commercial Aircraft NextGen Avionics Market is the industry's relentless commitment to enhanced safety standards. Next-generation avionics systems integrate advanced technologies such as terrain awareness and warning systems (TAWS), automatic dependent surveillance-broadcast (ADS-B), and predictive analytics. These features provide pilots with real-time data, improved situational awareness, and proactive safety measures, contributing to a significant reduction in the risk of accidents.

Regulatory Mandates and Compliance

The evolving regulatory landscape, driven by organizations like the Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), acts as a key driver for NextGen avionics adoption. Regulatory mandates, such as the implementation of performance-based navigation (PBN) standards, compel airlines to equip their fleets with advanced avionics systems to enhance navigation precision, reduce air traffic congestion, and ensure compliance with modernized airspace regulations.

Operational Efficiency and Cost Savings

A critical driver for the adoption of NextGen avionics is the pursuit of operational efficiency and cost savings by airlines. Advanced flight management systems, data-centric solutions, and predictive analytics enable optimized route planning, fuel efficiency, and maintenance monitoring. These capabilities result in substantial cost savings over the operational life of an aircraft, making NextGen avionics a strategic investment for airlines seeking to streamline operations and improve overall efficiency.

Integration of Communication Technologies

The demand for seamless communication and connectivity solutions in the aviation industry drives the integration of advanced communication technologies in NextGen avionics. Enhanced connectivity enables real-time data exchange between aircraft and ground-based systems, supporting applications such as air traffic management, weather updates, and maintenance monitoring. The continuous evolution of communication technologies contributes to improved operational efficiency and enhances the passenger experience.

Modernization of Air Traffic Management

NextGen avionics play a pivotal role in the broader initiative to modernize air traffic management systems globally. Collaborative efforts between aviation stakeholders and regulatory bodies aim to transition from ground-based radar systems to satellite-based navigation and surveillance. Avionics systems with features like ADS-B and PBN facilitate more precise and efficient air traffic management, reducing congestion and enhancing the overall capacity of airspace.

Demand for Fuel-Efficient Operations

The aviation industry's focus on sustainability and fuel-efficient operations is a driving force for NextGen avionics adoption. Advanced systems contribute to fuel savings through optimized flight profiles, efficient route planning, and improved overall aircraft performance. As airlines seek to mitigate environmental impact and comply with emissions standards, NextGen avionics become instrumental in achieving greener and more sustainable aviation practices.

Technological Advancements in Navigation and Surveillance

Continuous technological advancements in navigation and surveillance capabilities drive the adoption of NextGen avionics. Synthetic vision systems, precision navigation tools, and sensor technologies contribute to improved accuracy and reliability in various phases of flight. These advancements enable pilots to operate aircraft with greater precision, especially in challenging weather conditions or complex airspace, enhancing both safety and operational efficiency.

Growing Demand for Advanced Cockpit Systems

The growing demand for advanced cockpit systems, characterized by large touchscreen displays, intuitive interfaces, and user-friendly functionalities, is a significant driver for the NextGen Avionics Market. Airlines prioritize cockpit upgrades to attract and retain skilled pilots, improve crew coordination, and enhance overall flight deck ergonomics. The integration of modern avionics not only meets these demands but also contributes to reducing pilot workload and increasing operational efficiency.

Key Market Challenges

Cost and Retrofitting Challenges

One of the primary challenges facing the Global Commercial Aircraft NextGen Avionics Market is the significant cost associated with implementing and retrofitting advanced avionics systems. For existing aircraft fleets, the process of upgrading to NextGen avionics involves substantial expenses, including equipment costs, installation, and downtime for modifications. Airlines grapple with the financial implications of these investments, making it a key hurdle, especially for smaller carriers with budget constraints.

Regulatory Compliance Complexity

The complexity of navigating and complying with evolving aviation regulations poses a substantial challenge for the adoption of NextGen avionics. Meeting regulatory requirements, especially as they vary across regions and aviation authorities, demands meticulous planning and coordination. The need to align with different mandates, standards, and certification processes complicates the implementation timeline, leading to delays and increased administrative burdens for both aircraft manufacturers and operators.

Interoperability and Standardization Issues

Ensuring seamless interoperability among diverse avionics systems and achieving standardization across the industry remain significant challenges. With various manufacturers developing proprietary technologies, achieving a standardized framework for communication and data exchange becomes complex. This lack of standardization can hinder the potential benefits of NextGen avionics, limiting interoperability between different aircraft types and impacting the overall efficiency of air traffic management systems.

Technological Obsolescence

The rapid pace of technological advancements introduces the risk of obsolescence for NextGen avionics systems. The challenge lies in developing systems that remain relevant and compatible with emerging technologies over an extended operational life. Airlines and aircraft operators face the dilemma of potential investments becoming outdated sooner than anticipated, necessitating continuous updates and upgrades to stay aligned with the latest industry standards and technological capabilities.

Pilot Training and Transition

The transition to NextGen avionics requires comprehensive training programs for pilots to adapt to new systems and functionalities. The challenge arises from the need to ensure a smooth transition without disrupting daily flight operations. Adequate training facilities, simulators, and training curricula must be in place to facilitate a seamless shift to NextGen avionics, avoiding potential safety risks associated with pilot unfamiliarity or errors in operating advanced cockpit technologies.

Cybersecurity Concerns

As avionics systems become increasingly connected and dependent on digital technologies, the vulnerability to cybersecurity threats rises. Protecting NextGen avionics systems from potential cyber-attacks and unauthorized access becomes a critical challenge. Ensuring robust cybersecurity measures, including secure data transmission and protection against hacking attempts, is essential to maintaining the integrity and safety of these sophisticated systems.

Global Economic Uncertainties

Global economic uncertainties and industry-wide challenges, such as the impact of pandemics, geopolitical tensions, and fluctuating fuel prices, present challenges for airlines contemplating investments in NextGen avionics. Uncertain economic conditions may lead to budget constraints, deferrals in fleet renewal plans, or a prioritization of immediate operational needs over long-term avionics upgrades, affecting the pace of adoption across the commercial aviation sector.

Industry Collaboration and Coordination

The successful implementation of NextGen avionics requires extensive collaboration and coordination among industry stakeholders, including aircraft manufacturers, avionics suppliers, regulatory bodies, and airlines. Aligning interests, sharing data, and establishing effective communication channels are challenges that must be addressed to ensure a cohesive and harmonized approach to the deployment of NextGen avionics. The complexity of coordinating efforts across the aviation ecosystem poses a significant hurdle to achieving a seamless transition to advanced avionics technologies.

Key Market Trends

Advanced Cockpit Displays

An evolving trend in the Global Commercial Aircraft NextGen Avionics Market is the adoption of advanced cockpit displays. Large touchscreen interfaces, augmented reality (AR) displays, and intuitive graphical user interfaces are becoming standard features. These enhancements improve pilot situational awareness, reduce workload, and contribute to a more streamlined and efficient flight deck experience.

Connectivity and Data Sharing

A prominent trend shaping the NextGen Avionics Market is the emphasis on connectivity and data sharing. Aircraft are increasingly equipped with enhanced communication systems, facilitating real-time data exchange between aircraft and ground-based operations. This trend supports applications such as Aircraft Health Monitoring (AHM), predictive maintenance, and operational optimization, contributing to improved efficiency and safety.

Integration of Artificial Intelligence (AI)

The integration of artificial intelligence (AI) is a transformative trend in NextGen avionics. AI algorithms are employed for functions such as predictive analytics, anomaly detection, and automation of routine tasks. This trend enhances operational efficiency, facilitates proactive maintenance, and contributes to the development of intelligent avionics systems capable of learning and adapting to evolving operational needs.

Sustainable Avionics Solutions

As the aviation industry places a growing emphasis on sustainability, a trend in the NextGen Avionics Market involves the development of eco-friendly and energy-efficient solutions. Avionics systems are designed with a focus on minimizing environmental impact, reducing energy consumption, and aligning with the industry's commitment to sustainable aviation practices.

Enhanced Navigation and Surveillance Technologies

Continued advancements in navigation and surveillance technologies are driving trends in NextGen avionics. Features such as satellite-based navigation, improved accuracy in navigation systems, and enhanced surveillance capabilities contribute to safer and more efficient flight operations. These technologies play a crucial role in the modernization of air traffic management systems globally.

Human-Machine Interface (HMI) Innovations

The evolution of Human-Machine Interface (HMI) is a noteworthy trend in NextGen avionics. Innovations in HMI focus on creating user-friendly interfaces that enhance pilot interaction with avionics systems. Voice recognition, gesture control, and touchless interfaces are emerging trends, allowing pilots to efficiently manage aircraft systems and information, further reducing workload.

Multi-Sensor Fusion

A trend gaining momentum in the NextGen Avionics Market is the adoption of multi-sensor fusion techniques. By integrating data from various sensors, including radar, lidar, and infrared, avionics systems can provide a comprehensive and cohesive picture of the aircraft's surroundings. Multi-sensor fusion enhances situational awareness, especially in challenging weather conditions or complex airspace.

Electric Vertical Takeoff and Landing (eVTOL) Integration

The emergence of electric vertical takeoff and landing (eVTOL) aircraft has sparked a trend in NextGen avionics, as these innovative vehicles require advanced and compact avionics solutions. The development of avionics systems tailored for eVTOL platforms involves considerations such as electric propulsion, autonomous flight capabilities, and integration with urban air mobility ecosystems, reflecting the evolving landscape of air transportation.

Segmental Insights

By Installation Stage

The installation stage of avionics systems can be categorized into forward fit and retrofit, each playing a crucial role in the Global Commercial Aircraft NextGen Avionics Market. In the context of forward fit installation, avionics systems are integrated into newly manufactured aircraft during the production process. This approach allows original equipment manufacturers (OEMs) to tailor the avionics suite to the specific needs of the aircraft model. Forward fit installations offer advantages such as seamless integration, optimized space utilization, and the ability to design aircraft systems with the latest technologies from the outset. Airlines often choose forward fit options when ordering new aircraft to ensure that they are equipped with state-of-the-art avionics upon delivery.The retrofit installation involves upgrading or replacing existing avionics systems on aircraft that are already in operation. This installation stage addresses the need for modernization and compliance with evolving regulations without the necessity of purchasing new aircraft. Retrofitting is a dynamic segment of the market, driven by the continuous evolution of avionics technologies and the desire of airlines to extend the operational life of their existing fleets. Challenges associated with retrofit installations include cost considerations, downtime for the modification process, and ensuring compatibility with the aircraft's existing systems. However, retrofitting allows airlines to stay current with industry advancements, enhance safety features, and meet regulatory requirements without the capital investment associated with purchasing new aircraft. The retrofit segment reflects the adaptability and longevity of avionics systems, offering a solution for airlines seeking to upgrade their fleets incrementally.

Regional Insights

North America stands as a pivotal region in the Global Commercial Aircraft NextGen Avionics Market, driven by the technological leadership of the United States. The region boasts a robust aviation industry, housing major aerospace manufacturers, avionics suppliers, and technology innovators. The Federal Aviation Administration (FAA) plays a central role in shaping avionics regulations, influencing both domestic and international standards. Airlines in North America prioritize the adoption of NextGen avionics to comply with evolving regulatory requirements, enhance safety, and maintain a competitive edge. The region's commitment to airspace modernization, coupled with a strong focus on technological advancements, positions North America as a key influencer in shaping the trajectory of the global market.

Europe is a significant player in the Global Commercial Aircraft NextGen Avionics Market, with countries such as the United Kingdom, France, and Germany contributing to the region's prominence. The European Union Aviation Safety Agency (EASA) plays a crucial role in setting avionics standards and ensuring regulatory compliance. The European aviation industry emphasizes the modernization of air traffic management systems, driving the demand for advanced avionics solutions. Collaborative efforts between European countries and aerospace manufacturers foster innovation, contributing to the region's dynamic role in shaping the future of NextGen avionics.

The Asia-Pacific region is experiencing rapid growth in the Commercial Aircraft NextGen Avionics Market, driven by the expansion of aviation infrastructure and the rise of air travel demand. Countries such as China and India are making substantial investments in modernizing their fleets and adopting advanced avionics technologies. The region's aviation authorities are actively aligning with global standards while addressing unique challenges, such as diverse operational environments and airspace constraints. The Asia-Pacific market reflects a blend of established aviation markets and emerging economies, contributing to the overall growth and diversity of NextGen avionics adoption.

The Middle East is emerging as a notable market for Commercial Aircraft NextGen Avionics, with countries like the United Arab Emirates and Saudi Arabia driving technological advancements in the aviation sector. The region's strategic location, coupled with a focus on aviation infrastructure development, contributes to the demand for advanced avionics systems. The Middle East's unique operational requirements, including high temperatures and long-haul flights, influence the customization of avionics solutions. Collaborations between regional carriers and international aerospace companies further position the Middle East as a key influencer in the global market.

Report Scope:

In this report, the Global Commercial Aircraft NextGen Avionics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Commercial Aircraft NextGen Avionics Market, By System:

  • Flight Management System
  • Communication System
  • Electric and Navigation System
  • Surveillance and Emergency System
  • Collision Avoidance System
  • Weather System
  • Others

Commercial Aircraft NextGen Avionics Market, By Installation Stage:

  • Forward Fit
  • Retrofit

Commercial Aircraft NextGen Avionics Market, By Aircraft Type:

  • Narrow Body
  • Wide Body

Commercial Aircraft NextGen Avionics Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe CIS
  • Germany
  • Spain
  • France
  • Russia
  • Italy
  • United Kingdom
  • Belgium
  • Asia-Pacific
  • China
  • India
  • Japan
  • Indonesia
  • Thailand
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East Africa
  • Turkey
  • Iran
  • Saudi Arabia
  • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Commercial Aircraft NextGen Avionics Market.

Available Customizations:

Global Commercial Aircraft NextGen Avionics Market report with the given market data, the publisher offers customizations according to a company's specific needs.

This product will be delivered within 1-3 business days.

Table of Contents

1 Introduction
1.1. Product Overview
1.2. Key Highlights of the Report
1.3. Market Coverage
1.4. Market Segments Covered
1.5. Research Tenure Considered
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Market Forecast
3.3. Key Regions
3.4. Key Segments
4. Impact of COVID-19 on Global Commercial Aircraft Next Gen Avionics Market
5. Global Commercial Aircraft Next Gen Avionics Market Outlook
5.1. Market Size Forecast
5.1.1. By Value
5.2. Market Share Forecast
5.2.1. By System Market Share Analysis (Flight Management System, Communication System, Electric and Navigation System, Surveillance and Emergency System, Collision Avoidance System, Weather System, and Others)
5.2.2. By Installation Stage Market Share Analysis (Forward Fit and Retrofit)
5.2.3. By Aircraft Type Market Share Analysis (Narrow Body and Wide Body)
5.2.4. By Regional Market Share Analysis
5.2.4.1. Asia-Pacific Market Share Analysis
5.2.4.2. Europe CIS Market Share Analysis
5.2.4.3. North America Market Share Analysis
5.2.4.4. South America Market Share Analysis
5.2.4.5. Middle East Africa Market Share Analysis
5.2.5. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2023)
5.3. Global Commercial Aircraft Next Gen Avionics Market Mapping Opportunity Assessment
5.3.1. By System Market Mapping Opportunity Assessment
5.3.2. By Installation Stage Market Mapping Opportunity Assessment
5.3.3. By Aircraft Type Market Mapping Opportunity Assessment
5.3.4. By Regional Market Mapping Opportunity Assessment
6. Asia-Pacific Commercial Aircraft Next Gen Avionics Market Outlook
6.1. Market Size Forecast
6.1.1. By Value
6.2. Market Share Forecast
6.2.1. By System Market Share Analysis
6.2.2. By Installation Stage Market Share Analysis
6.2.3. By Aircraft Type Market Share Analysis
6.2.4. By Country Market Share Analysis
6.2.4.1. China Market Share Analysis
6.2.4.2. India Market Share Analysis
6.2.4.3. Japan Market Share Analysis
6.2.4.4. Indonesia Market Share Analysis
6.2.4.5. Thailand Market Share Analysis
6.2.4.6. South Korea Market Share Analysis
6.2.4.7. Australia Market Share Analysis
6.2.4.8. Rest of Asia-Pacific Market Share Analysis
6.3. Asia-Pacific: Country Analysis
6.3.1. China Commercial Aircraft Next Gen Avionics Market Outlook
6.3.1.1. Market Size Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share Forecast
6.3.1.2.1. By System Market Share Analysis
6.3.1.2.2. By Installation Stage Market Share Analysis
6.3.1.2.3. By Aircraft Type Market Share Analysis
6.3.2. India Commercial Aircraft Next Gen Avionics Market Outlook
6.3.2.1. Market Size Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share Forecast
6.3.2.2.1. By System Market Share Analysis
6.3.2.2.2. By Installation Stage Market Share Analysis
6.3.2.2.3. By Aircraft Type Market Share Analysis
6.3.3. Japan Commercial Aircraft Next Gen Avionics Market Outlook
6.3.3.1. Market Size Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share Forecast
6.3.3.2.1. By System Market Share Analysis
6.3.3.2.2. By Installation Stage Market Share Analysis
6.3.3.2.3. By Aircraft Type Market Share Analysis
6.3.4. Indonesia Commercial Aircraft Next Gen Avionics Market Outlook
6.3.4.1. Market Size Forecast
6.3.4.1.1. By Value
6.3.4.2. Market Share Forecast
6.3.4.2.1. By System Market Share Analysis
6.3.4.2.2. By Installation Stage Market Share Analysis
6.3.4.2.3. By Aircraft Type Market Share Analysis
6.3.5. Thailand Commercial Aircraft Next Gen Avionics Market Outlook
6.3.5.1. Market Size Forecast
6.3.5.1.1. By Value
6.3.5.2. Market Share Forecast
6.3.5.2.1. By System Market Share Analysis
6.3.5.2.2. By Installation Stage Market Share Analysis
6.3.5.2.3. By Aircraft Type Market Share Analysis
6.3.6. South Korea Commercial Aircraft Next Gen Avionics Market Outlook
6.3.6.1. Market Size Forecast
6.3.6.1.1. By Value
6.3.6.2. Market Share Forecast
6.3.6.2.1. By System Market Share Analysis
6.3.6.2.2. By Installation Stage Market Share Analysis
6.3.6.2.3. By Aircraft Type Market Share Analysis
6.3.7. Australia Commercial Aircraft Next Gen Avionics Market Outlook
6.3.7.1. Market Size Forecast
6.3.7.1.1. By Value
6.3.7.2. Market Share Forecast
6.3.7.2.1. By System Market Share Analysis
6.3.7.2.2. By Installation Stage Market Share Analysis
6.3.7.2.3. By Aircraft Type Market Share Analysis
7. Europe CIS Commercial Aircraft Next Gen Avionics Market Outlook
7.1. Market Size Forecast
7.1.1. By Value
7.2. Market Share Forecast
7.2.1. By System Market Share Analysis
7.2.2. By Installation Stage Market Share Analysis
7.2.3. By Aircraft Type Market Share Analysis
7.2.4. By Country Market Share Analysis
7.2.4.1. Germany Market Share Analysis
7.2.4.2. Spain Market Share Analysis
7.2.4.3. France Market Share Analysis
7.2.4.4. Russia Market Share Analysis
7.2.4.5. Italy Market Share Analysis
7.2.4.6. United Kingdom Market Share Analysis
7.2.4.7. Belgium Market Share Analysis
7.2.4.8. Rest of Europe CIS Market Share Analysis
7.3. Europe CIS: Country Analysis
7.3.1. Germany Commercial Aircraft Next Gen Avionics Market Outlook
7.3.1.1. Market Size Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share Forecast
7.3.1.2.1. By System Market Share Analysis
7.3.1.2.2. By Installation Stage Market Share Analysis
7.3.1.2.3. By Aircraft Type Market Share Analysis
7.3.2. Spain Commercial Aircraft Next Gen Avionics Market Outlook
7.3.2.1. Market Size Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share Forecast
7.3.2.2.1. By System Market Share Analysis
7.3.2.2.2. By Installation Stage Market Share Analysis
7.3.2.2.3. By Aircraft Type Market Share Analysis
7.3.3. France Commercial Aircraft Next Gen Avionics Market Outlook
7.3.3.1. Market Size Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share Forecast
7.3.3.2.1. By System Market Share Analysis
7.3.3.2.2. By Installation Stage Market Share Analysis
7.3.3.2.3. By Aircraft Type Market Share Analysis
7.3.4. Russia Commercial Aircraft Next Gen Avionics Market Outlook
7.3.4.1. Market Size Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share Forecast
7.3.4.2.1. By System Market Share Analysis
7.3.4.2.2. By Installation Stage Market Share Analysis
7.3.4.2.3. By Aircraft Type Market Share Analysis
7.3.5. Italy Commercial Aircraft Next Gen Avionics Market Outlook
7.3.5.1. Market Size Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share Forecast
7.3.5.2.1. By System Market Share Analysis
7.3.5.2.2. By Installation Stage Market Share Analysis
7.3.5.2.3. By Aircraft Type Market Share Analysis
7.3.6. United Kingdom Commercial Aircraft Next Gen Avionics Market Outlook
7.3.6.1. Market Size Forecast
7.3.6.1.1. By Value
7.3.6.2. Market Share Forecast
7.3.6.2.1. By System Market Share Analysis
7.3.6.2.2. By Installation Stage Market Share Analysis
7.3.6.2.3. By Aircraft Type Market Share Analysis
7.3.7. Belgium Commercial Aircraft Next Gen Avionics Market Outlook
7.3.7.1. Market Size Forecast
7.3.7.1.1. By Value
7.3.7.2. Market Share Forecast
7.3.7.2.1. By System Market Share Analysis
7.3.7.2.2. By Installation Stage Market Share Analysis
7.3.7.2.3. By Aircraft Type Market Share Analysis
8. North America Commercial Aircraft Next Gen Avionics Market Outlook
8.1. Market Size Forecast
8.1.1. By Value
8.2. Market Share Forecast
8.2.1. By System Market Share Analysis
8.2.2. By Installation Stage Market Share Analysis
8.2.3. By Aircraft Type Market Share Analysis
8.2.4. By Country Market Share Analysis
8.2.4.1. United States Market Share Analysis
8.2.4.2. Mexico Market Share Analysis
8.2.4.3. Canada Market Share Analysis
8.3. North America: Country Analysis
8.3.1. United States Commercial Aircraft Next Gen Avionics Market Outlook
8.3.1.1. Market Size Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share Forecast
8.3.1.2.1. By System Market Share Analysis
8.3.1.2.2. By Installation Stage Market Share Analysis
8.3.1.2.3. By Aircraft Type Market Share Analysis
8.3.2. Mexico Commercial Aircraft Next Gen Avionics Market Outlook
8.3.2.1. Market Size Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share Forecast
8.3.2.2.1. By System Market Share Analysis
8.3.2.2.2. By Installation Stage Market Share Analysis
8.3.2.2.3. By Aircraft Type Market Share Analysis
8.3.3. Canada Commercial Aircraft Next Gen Avionics Market Outlook
8.3.3.1. Market Size Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share Forecast
8.3.3.2.1. By System Market Share Analysis
8.3.3.2.2. By Installation Stage Market Share Analysis
8.3.3.2.3. By Aircraft Type Market Share Analysis
9. South America Commercial Aircraft Next Gen Avionics Market Outlook
9.1. Market Size Forecast
9.1.1. By Value
9.2. Market Share Forecast
9.2.1. By System Market Share Analysis
9.2.2. By Installation Stage Market Share Analysis
9.2.3. By Aircraft Type Market Share Analysis
9.2.4. By Country Market Share Analysis
9.2.4.1. Brazil Market Share Analysis
9.2.4.2. Argentina Market Share Analysis
9.2.4.3. Colombia Market Share Analysis
9.2.4.4. Rest of South America Market Share Analysis
9.3. South America: Country Analysis
9.3.1. Brazil Commercial Aircraft Next Gen Avionics Market Outlook
9.3.1.1. Market Size Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share Forecast
9.3.1.2.1. By System Market Share Analysis
9.3.1.2.2. By Installation Stage Market Share Analysis
9.3.1.2.3. By Aircraft Type Market Share Analysis
9.3.2. Colombia Commercial Aircraft Next Gen Avionics Market Outlook
9.3.2.1. Market Size Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share Forecast
9.3.2.2.1. By System Market Share Analysis
9.3.2.2.2. By Installation Stage Market Share Analysis
9.3.2.2.3. By Aircraft Type Market Share Analysis
9.3.3. Argentina Commercial Aircraft Next Gen Avionics Market Outlook
9.3.3.1. Market Size Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share Forecast
9.3.3.2.1. By System Market Share Analysis
9.3.3.2.2. By Installation Stage Market Share Analysis
9.3.3.2.3. By Aircraft Type Market Share Analysis
10. Middle East Africa Commercial Aircraft Next Gen Avionics Market Outlook
10.1. Market Size Forecast
10.1.1. By Value
10.2. Market Share Forecast
10.2.1. By System Market Share Analysis
10.2.2. By Installation Stage Market Share Analysis
10.2.3. By Aircraft Type Market Share Analysis
10.2.4. By Country Market Share Analysis
10.2.4.1. Turkey Market Share Analysis
10.2.4.2. Iran Market Share Analysis
10.2.4.3. Saudi Arabia Market Share Analysis
10.2.4.4. UAE Market Share Analysis
10.2.4.5. Rest of Middle East Africa Market Share Analysis
10.3. Middle East Africa: Country Analysis
10.3.1. Turkey Commercial Aircraft Next Gen Avionics Market Outlook
10.3.1.1. Market Size Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share Forecast
10.3.1.2.1. By System Market Share Analysis
10.3.1.2.2. By Installation Stage Market Share Analysis
10.3.1.2.3. By Aircraft Type Market Share Analysis
10.3.2. Iran Commercial Aircraft Next Gen Avionics Market Outlook
10.3.2.1. Market Size Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share Forecast
10.3.2.2.1. By System Market Share Analysis
10.3.2.2.2. By Installation Stage Market Share Analysis
10.3.2.2.3. By Aircraft Type Market Share Analysis
10.3.3. Saudi Arabia Commercial Aircraft Next Gen Avionics Market Outlook
10.3.3.1. Market Size Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share Forecast
10.3.3.2.1. By System Market Share Analysis
10.3.3.2.2. By Installation Stage Market Share Analysis
10.3.3.2.3. By Aircraft Type Market Share Analysis
10.3.4. UAE Commercial Aircraft Next Gen Avionics Market Outlook
10.3.4.1. Market Size Forecast
10.3.4.1.1. By Value
10.3.4.2. Market Share Forecast
10.3.4.2.1. By System Market Share Analysis
10.3.4.2.2. By Installation Stage Market Share Analysis
10.3.4.2.3. By Aircraft Type Market Share Analysis
11. SWOT Analysis
11.1. Strength
11.2. Weakness
11.3. Opportunities
11.4. Threats
12. Market Dynamics
12.1. Market Drivers
12.2. Market Challenges
13. Market Trends and Developments
14. Competitive Landscape
14.1. Company Profiles (Up to 10 Major Companies)
14.1.1. RTX Corporation
14.1.1.1. Company Details
14.1.1.2. Key Product Offered
14.1.1.3. Financials (As Per Availability)
14.1.1.4. Recent Developments
14.1.1.5. Key Management Personnel
14.1.2. General Electric Company
14.1.2.1. Company Details
14.1.2.2. Key Product Offered
14.1.2.3. Financials (As Per Availability)
14.1.2.4. Recent Developments
14.1.2.5. Key Management Personnel
14.1.3. Safran S. A.
14.1.3.1. Company Details
14.1.3.2. Key Product Offered
14.1.3.3. Financials (As Per Availability)
14.1.3.4. Recent Developments
14.1.3.5. Key Management Personnel
14.1.4. L3harris Technologies Inc.
14.1.4.1. Company Details
14.1.4.2. Key Product Offered
14.1.4.3. Financials (As Per Availability)
14.1.4.4. Recent Developments
14.1.4.5. Key Management Personnel
14.1.5. Teledyne Technologies Incorporated
14.1.5.1. Company Details
14.1.5.2. Key Product Offered
14.1.5.3. Financials (As Per Availability)
14.1.5.4. Recent Developments
14.1.5.5. Key Management Personnel
14.1.6. Bae Systems Plc
14.1.6.1. Company Details
14.1.6.2. Key Product Offered
14.1.6.3. Financials (As Per Availability)
14.1.6.4. Recent Developments
14.1.6.5. Key Management Personnel
14.1.7. Honeywell International Inc.
14.1.7.1. Company Details
14.1.7.2. Key Product Offered
14.1.7.3. Financials (As Per Availability)
14.1.7.4. Recent Developments
14.1.7.5. Key Management Personnel
14.1.8. Curtiss-Wright Corporation
14.1.8.1. Company Details
14.1.8.2. Key Product Offered
14.1.8.3. Financials (As Per Availability)
14.1.8.4. Recent Developments
14.1.8.5. Key Management Personnel
15. Strategic Recommendations
15.1. Key Focus Areas
15.1.1. Target By Regions
15.1.2. Target By System
15.1.3. Target By Aircraft Type
16. About the Publisher

Companies Mentioned

  • RTX Corporation
  • General Electric Company
  • Safran S.A.
  • L3harris Technologies Inc.
  • Teledyne Technologies Incorporated
  • Bae Systems Plc
  • Honeywell International Inc.
  • Curtiss-Wright Corporation

Table Information