+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Pavement Design and Materials. Edition No. 2

  • Book

  • 656 Pages
  • July 2024
  • John Wiley and Sons Ltd
  • ID: 5953211
Practical guide for all aspects of pavement engineering, updated with the latest techniques, standards, and software

The newly revised and updated Second Edition of Pavement Design and Materials offers a comprehensive treatment of pavement materials, structural analysis, design, evaluation, and economic analysis of asphalt and portland concrete pavements.

Written by two highly qualified engineering professors with a wealth of experience in the field, Pavement Design and Materials provides readers with: - State-of-the-art techniques for material characterization, including a linear viscoelasticity primer - Methods and software for the analysis of flexible and ridgid pavements including the AASHTOWare Pavement ME Design - State-of-the-art pavement evaluation techniques including moduli backcalculation methods - Pavement economic analysis techniques including the most up-to-date user cost relationships.

The book companion website provides: - Solved examples in each chapter and the electronic files associated with them - An instructor solutions manual for the problems provided at the end of each chapter - PowerPoint presentations by chapter to facilitate lecture delivery

Pavement Design and Materials is an essential up-to-date textbook on the subject for upper-level undergraduate and graduate level courses on pavement materials and pavement design. It is also a valuable reference for practicing professional engineers involved in the various aspects of roadway pavement material selection and structural design.

Table of Contents

About the Authors xi

Preface xiii

About the Companion Website xv

1 Introduction 1

1.1 Pavement Types 1

1.2 Pavement Infrastructure Overview 5

1.3 Significance of Pavement Infrastructure to the National Economy 6

1.4 Funding Pavements 6

1.5 Engineering Pavements 10

1.6 Book Organization 11

References 12

Problems 13

2 Pavement Traffic Loading 15

2.1 Introduction 15

2.2 Summarizing Traffic Data for Pavement Design 31

2.3 Load Limits and Enforcement 41

References 45

Problems 46

3 Characterization of Pavement Subgrades and Bases 49

3.1 Mechanical Behavior 49

3.2 Resilient Response 51

3.3 Plastic Response 67

3.4 Aggregate Layer Indices 69

3.5 Aggregate and Soil Stabilization 75

References 77

Problems 80

4 Aggregates 83

4.1 Aggregate Types and Classifications 83

4.2 Physical Properties 86

4.3 Chemical Properties 106

4.4 Mechanical Properties 108

References 113

Problems 114

5 Asphalt Materials 117

5.1 Introduction 117

5.2 Chemical Composition of Asphalt Binders 118

5.3 Introduction to Rheology and Viscoelasticity 122

5.4 Asphalt Binder Properties 132

5.5 Asphalt Grades 142

5.6 Temperature Susceptibility 154

5.7 Asphalt Binder Modification 154

5.8 Asphalt Mixture Volumetric Analysis 155

5.9 Asphalt Mixture Properties 159

References 172

Problems 176

6 Concrete Materials 179

6.1 Cementitious Materials 179

6.2 Hydration 180

6.3 Chemical Admixtures 185

6.4 Properties of Cement, Paste, and Mortar 185

6.5 Properties of Portland Cement Concrete 187

References 196

Problems 197

7 Flexible Pavement Analysis 199

7.1 Introduction 199

7.2 Single-Layer Linear Elastic Solutions 200

7.3 Two-Layer Linear Elastic Solutions 205

7.4 Multilayer Linear Elastic Solutions 208

7.5 Axisymmetric Viscoelastic Solutions 212

7.6 Finite-Layer Viscoelastic Solutions 217

7.7 In Summary 221

References 221

Problems 223

8 Rigid Pavement Analysis 225

8.1 Introduction 225

8.2 Overview of the Elastic Theory on Plates 229

8.3 Environment-Induced Stresses 231

8.4 Load-Induced Stresses 240

8.5 Finite Element Method Solutions 251

References 263

Problems 264

9 Pavement Evaluation 269

9.1 Introduction 270

9.2 Serviceability 270

9.3 Structural Capacity 298

9.4 Surface Distress 324

9.5 Summarizing Pavement Distresses into an Index 331

9.6 Safety 338

References 344

Problems 349

10 Environmental Effects on Pavements 353

10.1 Water in Pavements 353

10.2 Heat in Pavements 372

10.3 In Summary 384

References 384

Problems 387

11 Structural Design of Flexible Pavements 389

11.1 AASHTO 1993 Design Method 389

11.2 Asphalt Institute Design Method 401

11.3 AASHTO 2020 Design Method 404

11.4 Summary 423

References 423

Problems 426

12 Structural Design of Rigid Pavements 429

12.1 Introduction 429

12.2 AASHTO 1993 Design Method 430

12.3 PCA Design Method 440

12.4 AASHTO 2020 Design Method 449

12.5 Summary 467

References 467

Problems 468

13 Pavement Rehabilitation 473

13.1 Introduction 474

13.2 AASHTO 1993 Flexible Pavement Overlay Design 477

13.3 Asphalt Institute Flexible Pavement Overlay Design 482

13.4 AASHTO 1993 Rigid Pavement Overlay Design 482

13.5 AASHTO 2020 Overlay Design Method 487

References 491

Problems 492

14 Economic Analysis of Pavements 495

14.1 Introduction 495

14.2 Benefit/Cost Ratio Method 497

14.3 Cost Components in Pavement LCCA 500

14.4 Agency Costs 500

14.5 Vehicle Operating Costs 503

14.6 Non-Vehicle Operating Costs 522

References 533

Problems 537

A A Primer of Linear Viscoelasticity 541

A.1 LVE Models in the Time Domain 541

A.2 LVE Models in the Frequency Domain 547

A.3 Fitting LVE Models to Experimental Data 550

B MEPD User’s Manual 557

Preface 557

List of Abbreviations 557

B.1 MEPD Software Overview 559

B.2 General Information Inputs 571

B.3 Performance Criteria and Reliability Inputs 573

B.4 Material Inputs 575

B.5 Existing Pavement Condition Inputs 589

B.6 Traffic Inputs 594

B.7 Running MEPD and Interpreting the Results 606

References 608

C MEPD Design Examples 611

Index 625

Authors

A. T. Papagiannakis University of Texas at San Antonio, TX. E. A. Masad Texas A&M University, TX.