+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Nanostructured Lithium-ion Battery Materials. Synthesis, Characterization, and Applications. Micro and Nano Technologies

  • Book

  • October 2024
  • Elsevier Science and Technology
  • ID: 5971468

Nanostructured Lithium-ion Battery Materials: Synthesis and Applications provides a detailed overview of nanostructured materials for application in Li-ion batteries, supporting improvements in materials selection and battery performance. The book begins by presenting the fundamentals of Lithium-ion batteries, including electrochemistry and reaction mechanism, advantages and disadvantages of Li-ion batteries, and characterization methods. Subsequent sections provide in-depth coverage of a range of nanostructured materials as applied to cathodes, electrolytes, separators, and anodes. Finally, other key aspects are discussed, including industrial scale-up, safety, life cycle analysis, recycling, and future research trends. This is a valuable resource for researchers, faculty, and advanced students across nanotechnology, materials science, battery technology, energy storage, chemistry, applied physics, chemical engineering, and electrical engineering. In an industrial setting, this book will be of interest to scientists, engineers, and R&D professionals working with advanced materials for Li-ion batteries and other energy storage applications.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

Part I: Introduction to Lithium-ion Battery Systems
1. Introduction and History of Lithium-ion Batteries
2. Electrochemistry and Basic Reaction Mechanism of Lithium-ion Batteries
3. Advantages and Disadvantages of Lithium-ion Batteries
4. Characterization Methods for Lithium-ion Batteries

Part II: Nanostructured Cathode Materials for Li-ion Batteries
5. Hollow Carbon Spheres and Their Hybrid Nanomaterials as Cathode Materials
6. Nanostructured Conductive Polymers as Active Electrode Composites
7. Nanostructured Metal-Oxides as Cathode Materials

Part III: Nanostructured Electrolyte Materials for Li-ion Batteries
8. Aqueous Electrolyte for Li-ion Batteries
9. Non-aqueous Electrolyte for Li-ion Batteries
10. Ionic Liquid Electrolyte for Li-ion Batteries
11. Hybrid Electrolyte for Li-ion Batteries

Part IV: Nanostructured Separator Materials for Li-ion Batteries
12. Functionalized Polyolefin Separators
13. Nanostructures Separators Based on Non-Polyolefin Polymers

Part V: Nanostructured Anode Materials for Li-ion Batteries
14. CNT-Metal Oxide Composites as Cathode Materials
15. Carbonaceous Nanostructured Materials as Anodes
16. Titanium based Oxides as Anodes
17. Metal Alloys Materials as Anodes
18. Nanostructured Transition Metal Oxides as Anodes
19. MXene-based Nanomaterials as Anode Materials
20. Lignocellulosic Biomass Generated Activated Carbon Synthesis and its Application as an Anode Material for Lithium Ion Batteries.

Part VI: Future Outlook and Challenges
21. Lithium Ion Batteries: From Lab to Industry and Safety
22. Life-Cycle Analysis of Lithium-Ion Batteries
23. Lithium-Ion Batteries: Future Market Challenges and Recycling

Authors

Sabu Thomas Professor and Director, International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India.

Sabu Thomas is a Professor and Director of the International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India. Professor Thomas is internationally recognized for his contributions to polymer science and engineering, with his research interests encompassing polymer nanocomposites, elastomers, polymer blends, interpenetrating polymer networks, polymer membranes, green composites, nanocomposites, nanomedicine, and green nanotechnology. His groundbreaking inventions in polymer nanocomposites, polymer blends, green bionanotechnology, and nano-biomedical sciences have significantly advanced the development of new materials for the automotive, space, housing, and biomedical fields.

Oumarou Savadogo Professor and UNESCO Chair on Sustainable Engineering and Applied Solar Technologies, at Polytechnique Montr�al, Quebec, Canada. Prof. Oumarou Savadogo is Full Professor and UNESCO Chair on Sustainable Engineering and Applied Solar Technologies, at Polytechnique Montr�al, Quebec, Canada.
With a background in materials science, he was also previously a process engineer at Rh�ne-Siltec (production of silicon for photovoltaic solar cells) and a postdoctoral fellow at CNRS-Bellevue, both in France. At Polytechnique Montr�al, he is Founding Director of the Laboratory of New Materials for Energy and Electrochemistry, and is responsible for the graduate programs on Renewable Energy in Energy Engineering and Energy and Sustainable Development in Chemical Engineering. Prof. Savadogo's research interests include the development of new materials for solar energy, fuel cells, batteries, electrochemical capacitors, electrochemistry, metallurgical processes, corrosion, and microbial cells. He is author or co-author of more than 200 scientific publications in refereed scientific journals, Founding Editor of the Journal of New Materials for Electrochemical Systems, and a member of the advisory/editorial boards of the Journal of Enzyme Engineering, the Journal of Materials, Membranes, and Discover Energy. He is also member of the Broad of Directors and Advisory Board of the International Hydrogen Energy Association. Amadou Belal Gueye Research Scholar, School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India. Amadou Belal Gueye is a Research Scholar at the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India. He received his bachelor's degree in physics-chemistry and his master's degree in physical chemistry applied to energy and analysis, from Cheikh Anta Diop University, Dakar, Senegal. He works in the field of lithium/sulfur batteries. Hanna J. Maria Senior Researcher, International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, India. Dr. Hanna J. Maria is a Senior Researcher at the International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, India. She previously held postdoctoral research positions at the Centre for Advanced Materials, Qatar University, the Department of Mechanical Engineering, Yamaguchi University, Japan, the Centre RAPSODEE, IMT Mines, Albi, France, and the Siberian Federal University, Krasnoyarsk, Russia. Dr. Maria has published 20 articles and 10 book chapters, and co-edited 4 books. Her research has focused on natural rubber composites and their blends, thermoplastic composites, lignin, nanocellulose, bio-nanocomposites, nanocellulose, rubber-based composites and nanocomposites, and hybrid nanocomposites.