+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

General Continuum Mechanics and Constitutive Modeling

  • Book

  • December 2024
  • Elsevier Science and Technology
  • ID: 5978266
General Continuum Mechanics and Constitutive Modeling starts with a comprehensive treatment of tensor algebra that is followed by coverage of strains, stresses, and thermodynamics. General principles for constitutive modeling are presented, including objectivity, Lie-derivative, and covariance, as are issues central to configurational mechanics, such as polyconvexity and invariance principles used to establish balance equations. The book includes a chapter on hyperelasticity which analyzes isotropic and anisotropic materials, and also discusses the distinction between energetic and entropic material response.

The finite element method and classic plasticity based on hypoelasticity are each covered, and the book concludes with a chapter covering plasticity based on hyperplasticity, including isotropy, anisotropy, thermoplasticity, and crystal plasticity.

Table of Contents

1. Tensor algebra in general coordinates
2. Kinematics
3. Stresses and balance equations
4. Thermodynamics
5. General principles for constitutive modeling
6. Configurational mechanics
7. Balance equations established using invariance principles
8. Convexity of strain energy function
9. Hyperelasticity
10. Finite element formulation of hyperplasticity
11. Plasticity based on hypo-elasticity
12. Plasticity based on hyperelasticity

Authors

Niels Saabye Ottosen Solid Mechanics Division, Lund University, Sweden. has been a Professor in the Solid Mechanics Division, Lund University, Sweden since 1991. His research is focused in continuum mechanics, material modeling, and finite element method.