+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Mixed Plastic Waste Recycling Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2019-2029F

  • PDF Icon

    Report

  • 185 Pages
  • July 2024
  • Region: Global
  • TechSci Research
  • ID: 5986577
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

Global Mixed Plastic Waste Recycling Market was valued at USD 258.62 Million in 2023 and is anticipated to project steady growth in the forecast period with a CAGR of 13.56% through 2029. Mixed plastic recycling encompasses the process of collecting, sorting, and processing plastic waste that includes various types of plastics mixed. This includes plastics of different resin types (such as PET, HDPE, PVC), colors, shapes, and forms (such as bottles, containers, and packaging materials). The goal of mixed plastic recycling is to reclaim and transform these diverse plastic materials into new products or materials, thereby reducing landfill waste, conserving resources, and mitigating environmental impacts associated with plastic production and disposal.

The recycling process integrates advanced sorting technologies and sophisticated recycling methods. Mechanical recycling involves sorting, shredding, melting, and reforming plastic waste into new products. Technologies such as optical sorting are employed to automate the sorting process. Chemical recycling, on the other hand, converts mixed plastic waste into chemical intermediates or fuels through processes like pyrolysis, depolymerization, or gasification, which can handle plastics that are challenging to recycle mechanically.

Companies are actively developing technologies to upcycle mixed plastic waste into higher-value products like composite materials or 3D printing filaments, contributing to both economic and environmental sustainability. Recycled plastics are widely utilized across various industries including packaging, construction, automotive, electronics, and consumer goods, showcasing their versatility and market demand.

The mixed plastic recycling market is expected to experience significant growth, driven by technological advancements, increased investments in recycling infrastructure, and shifting consumer preferences towards sustainable products. Continued innovation and collaboration among stakeholders will be essential in fully capitalizing on the opportunities within this evolving market, promoting effective plastic waste management and fostering a circular economy.

Key Market Drivers

Regulatory Pressures

Regulatory pressures are significantly driving the growth of the mixed plastic waste recycling sector. Governments worldwide are implementing stringent laws and mandates aimed at boosting recycling rates and reducing environmental impact. These regulations include enforcing mandatory recycling targets, restricting landfill disposal of plastics, and implementing extended producer responsibility (EPR) programs.

For instance, the European Commission's Circular Plastics Alliance has set a target to incorporate 10 million tonnes of recycled plastics into European products by 2025, with feedstock technologies such as pyrolysis and gasification planned to account for 80% of capacity expansions. EPR programs transfer the responsibility for managing the end-of-life impacts of products to manufacturers, compelling them to finance or manage recycling efforts. This approach incentivizes manufacturers to design products for easier recycling and to use recycled materials in manufacturing.

Governments also offer financial incentives like tax breaks, grants, or subsidies to businesses that invest in recycling technologies or utilize recycled materials. These incentives are designed to alleviate the expenses linked with developing recycling infrastructure and to promote the adoption of sustainable practices. Additionally, extended producer responsibility (EPR) fees have been effectively implemented in Denmark and the Netherlands. Wyoming recently became the 25th state in the USA to pass legislation ensuring that advanced recycling facilities are regulated transparently and appropriately as manufacturing operations.

On the international front, agreements like the European Union's Circular Economy Package and the Basel Convention establish standards that influence global trade in plastic waste and encourage countries to enhance their recycling capabilities and practices. These regulations not only aim to combat plastic pollution but also promote the conservation of resources and support the shift towards a circular economy.

Consumer Demand and Corporate Responsibility

Consumer demand for sustainable products and corporate responsibility initiatives are major factors fueling the expansion of the mixed plastic waste recycling market. According to a recent OECD report, global plastic waste generation is projected to nearly triple by 2060, with only a fraction of about 9% currently being recycled, while the majority ends up in landfills or incinerated.

Heightened consumer awareness of environmental issues, especially concerning plastic pollution, is driving a strong preference for products and packaging made from recycled materials. This shift in consumer behavior is influencing purchasing decisions across various industries, prompting businesses to integrate more recycled content, including mixed plastics, into their products.

Many companies are setting ambitious sustainability goals, such as increasing the use of recycled materials and reducing plastic waste. For example, America’s Plastic Makers have committed to achieving 100% reuse, recycling, or recovery of U.S. plastic packaging by 2040, reflecting a proactive stance towards sustainable practices.

Collaboration among stakeholders like manufacturers, retailers, recyclers, and consumers is crucial for scaling up mixed plastic waste recycling efforts. Partnerships facilitate knowledge sharing, improve transparency in supply chains, and drive innovations in recycling technologies. Notably, collaborations between companies like LyondellBasell and Audi are pioneering the recycling of mixed automotive plastic waste, demonstrating industry efforts towards circular economy principles. BASF and ARCUS have entered into an agreement to produce and source pyrolysis oil derived from mixed plastic waste.

To meet the growing demand for sustainable products, businesses are investing in advanced recycling technologies capable of processing mixed plastic waste into high-quality recycled materials. Innovations such as Clariant's HDMax catalysts and Clarit adsorbents are designed to purify pyrolysis oil from challenging mixed plastic waste streams, enhancing the feasibility and economic viability of recycling initiatives.

Key Market Challenges

Complexity in Sorting

The mixed plastic waste recycling market encounters a significant challenge due to the intricate demands of sorting. This complexity stems from the diverse array of plastics present in mixed waste streams, encompassing various types, colors, and forms such as bottles, packaging materials, and other plastic products. The inadequacy of sorting infrastructure and processes makes it challenging to effectively separate different plastic types. Consequently, this leads to inaccuracies in recycling rates and issues with contamination. Additionally, inefficient collection systems, including insufficient recycling bins and inconsistent collection practices, further impede recycling efforts.

The absence of robust and efficient sorting and collection systems limits both the quantity and quality of recyclable plastics that can be processed effectively. Variability and the high cost of separation equipment are significant factors contributing to the statistic that only 25% of domestic plastic waste and 40% of bottles are currently recycled.

Mixed plastic waste often contains contaminants such as food residues, labels, adhesives, and other non-plastic materials. These contaminants compromise the quality of recycled plastics, reducing their suitability for higher-value applications and increasing processing costs. The complexity involved in sorting exacerbates the overall expenses associated with recycling mixed plastic waste. This economic consideration can impact the feasibility and profitability of recycling operations, particularly when the value derived from recycled materials does not offset the expenditures incurred in sorting and processing.

Technological Limitations

The mixed plastic waste recycling market encounters significant challenges due to technological limitations that hinder efficient recycling processes. Mixed plastic waste comprises various types of plastics with diverse compositions, additives, and colors, posing complexities that current technologies struggle to manage effectively. As a result, the quality and consistency of recycled plastics are often compromised.

Technologies designed to remove contaminants like food residues, labels, and non-plastic materials are frequently inadequate. This deficiency can degrade the quality of recycled plastics, limiting their suitability for higher-value applications. The processing capabilities of recycling technologies to convert mixed plastic waste into high-quality recycled materials are also restricted. Consequently, recycled plastics may not meet stringent industry standards or consumer expectations, impacting their marketability and economic viability.

Meeting regulatory standards for recycled materials becomes challenging when technological limitations affect the quality and consistency of recycled plastics. This hurdle can impede market access and the broader acceptance of recycled products in various industries.

Key Market Trends

Increase in Recycling Infrastructure

The expansion of recycling infrastructure is a pivotal trend in the mixed plastic waste recycling market, addressing key challenges such as complex sorting and contamination issues while enhancing the economic feasibility and environmental sustainability of plastic recycling efforts. Both companies and governments are investing in the establishment of new recycling plants and the enhancement of existing facilities to boost processing capacity and efficiency. These investments are driven by increasing recycling targets, regulatory mandates, and growing consumer demand for recycled materials.

In 2023, Source One Plastics, a joint venture between 23 Oaks Investments and LyondellBasell, successfully launched its plastic waste sorting and recycling facility in Eicklingen, Germany. This new facility specializes in processing challenging post-consumer plastic waste, including mixed plastic packaging and flexible polyolefins, which would typically be incinerated. With an anticipated annual processing capacity of 70,000 metric tons, equivalent to the plastic waste generated by approximately 1.5 million German citizens per year, the facility aims to significantly contribute to plastic waste reduction efforts.

Similarly, in 2024, BlueAlp and Recupero Etico Sostenibile (RES) signed an agreement to establish Italy's first industrial-scale advanced recycling facility. This facility is expected to process and convert 20,000 tons of mixed plastic waste annually, further bolstering recycling capabilities in the region.

The integration of advanced technologies such as robotics, artificial intelligence (AI), and sensor-based sorting systems within recycling infrastructure is enhancing sorting accuracy, reducing contamination, and improving overall recycling efficiency. For instance, in 2024, Veolia implemented AI-driven robotics at its Southwark facility to enhance the sorting of paper, card, mixed plastics, and beverage cartons, ensuring more effective recycling of aluminum materials.

Collaborations involving public entities, private companies, research institutions, and nonprofit organizations are fostering innovation and driving investments in recycling infrastructure. Eastman initiated a project in July 2021, planning to conduct research over a 15-month period following its launch. Padnos provided Eastman with a plastic-rich fraction of automotive shredder residue (ASR) as a sustainable feedstock for Eastman’s carbon renewal technology (CRT). Eastman successfully demonstrated the addition and conversion of this ASR feedstock into synthesis gas, which was subsequently used in the production of polyester and cellulosic thermoplastics downstream. The resins produced from this process were further formulated and supplied to Yanfeng. According to Eastman, Yanfeng in 2024 molded parts for demonstration purposes that met the original equipment manufacturer requirements for Ford, GM, and Stellantis, showcasing the feasibility of a circular solution. These collaborations facilitate the exchange of knowledge, drive technological advancements, and enable the development of scalable solutions for recycling mixed plastic waste, thereby contributing to sustainable global waste management practices.

Segmental Insights

Type of Mixed Plastic Waste Insights

Based on Type of Mixed Plastic Waste, the Post-consumer Mixed Plastic Waste emerged as the dominant segment in the Global market of Mixed Plastic Waste Recycling in 2023. Post-consumer plastic waste represents a significant proportion of the global plastic waste generated, encompassing items like packaging, bottles, containers, and various consumer goods that individuals use and discard. The volume of post-consumer plastic waste available for recycling exceeds that of post-industrial waste and ocean plastics. Plastics play a vital role in daily life, widely used in packaging for food, beverages, personal care products, and household items, ensuring a continuous generation of post-consumer plastic waste across diverse sectors and regions. According to a 2024 report by the Association of Plastic Recyclers, recyclers recovered over five billion pounds of postconsumer plastic for recycling in 2022. Technological advancements in recycling have increasingly enabled the processing and recycling of various types of post-consumer mixed plastics. There is a growing market demand for products and packaging made from recycled materials, particularly post-consumer plastics. This demand is driven by consumer preferences for eco-friendly products and the sustainability objectives of industries, prompting them to integrate recycled plastics into their supply chains.

Application Insights

Based on Application, the Fuel Production emerged as the fastest growing segment in the Global market of Mixed Plastic Waste Recycling in forecast period. Technological advancements, environmental concerns, regulatory backing, and rising demand for sustainable energy solutions are driving the growth of fuel production from mixed plastic waste. Innovations in pyrolysis, depolymerization, and other chemical recycling technologies have notably enhanced the efficiency and feasibility of converting diverse types of plastic waste into fuels, including challenging mixtures that are difficult to recycle mechanically. There is an increasing market demand for alternative fuels sourced from renewable and sustainable origins, aligning with efforts to reduce waste and meet energy requirements in an environmentally responsible manner. In 2024, Corsair Bangkok Company Ltd (CORSAIR) secured an agreement to supply Shell Singapore Pte Ltd (SSPL) with pyrolysis oil derived from mixed plastic waste. Corsair specializes in converting daily household plastic waste into advanced bio-oil through chemical recycling processes at its facility in Thailand, delivering the pyrolysis oil to Shell's Energy and Chemicals Park in Singapore on Bukom Island.

Companies are actively investing in expanding production capacities and refining technologies to advance the conversion of mixed plastic waste into fuel. For instance, LyondellBasell's recent decision to build an industrial-scale catalytic advanced recycling demonstration plant underscores this commitment. Scheduled to utilize its proprietary MoReTec technology, the plant aims to convert 50,000 tonnes of post-consumer plastic waste into feedstock annually, thereby driving innovation and improving the economic feasibility of fuel production from plastic waste.

Regional Insights

Based on Region, Asia-Pacific is expected to be the fastest growing region in the Global market of Mixed Plastic Waste Recycling in the forecast period. Asia Pacific's dominance in the mixed plastic waste recycling market stems from its rapid economic expansion, bolstered by supportive regulations, technological innovations, and heightened environmental consciousness. This region includes rapidly industrializing nations with large populations that heavily utilize plastics in packaging, consumer goods, and various industries, resulting in significant plastic waste generation. Governments in countries like China, India, Japan, and South Korea are increasingly enforcing stringent regulations to combat plastic pollution and promote recycling initiatives, fostering an environment conducive to investment in recycling infrastructure and advanced technologies. There is a burgeoning demand among consumers and industries in Asia Pacific for sustainable products and packaging crafted from recycled materials. Government initiatives and partnerships with the private sector are further driving investments in recycling infrastructure across Asia Pacific. For instance, Reliance Industries Limited (RIL) in India has achieved a milestone by chemically recycling plastic waste-based pyrolysis oil into International Sustainability & Carbon Certification (ISCC)-Plus certified circular polymers, underscoring the region's commitment to sustainable practices. Similarly, Dow, a global materials science company, has introduced circular polyethylene resins in Thailand, derived from pyrolysis oil and hard-to-recycle plastic waste. This initiative, led by Dow Thailand, aims to accelerate advanced recycling partnerships throughout Asia Pacific, highlighting the region's pivotal role in advancing sustainable solutions for plastic waste.

Key Market Players

  • Sulzer Limited
  • Plastonix
  • Elemental Recycling, Inc.
  • Axens Group
  • BASF SE
  • Envision Holdings, Inc.

Report Scope:

In this report, the Global Mixed Plastic Waste Recycling Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Mixed Plastic Waste Recycling Market, By Type of Mixed Plastic Waste:

  • Post-consumer Mixed Plastic
  • Post-industrial Mixed Plastic
  • Ocean Plastic

Mixed Plastic Waste Recycling Market, By Process:

  • Chemical
  • Others

Mixed Plastic Waste Recycling Market, By Application:

  • Manufacturing New Plastic Products
  • Textiles
  • Construction Materials
  • Fuel Production
  • Others

Mixed Plastic Waste Recycling Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Mixed Plastic Waste Recycling Market.

Available Customizations:

Global Mixed Plastic Waste Recycling Market report with the given market data, the publisher offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Impact of COVID-19 on Global Mixed Plastic Waste Recycling Market5. Impact of Wars on Global Mixed Plastic Waste Recycling Market
6. Global Mixed Plastic Waste Recycling Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value & Volume
6.2. Market Share & Forecast
6.2.1. By Type of Mixed Plastic Waste (Post-consumer Mixed Plastic, Post-industrial Mixed Plastic, Ocean Plastic)
6.2.2. By Process (Chemicals, Others)
6.2.3. By Application (Manufacturing New Plastic Products, Textiles, Construction Materials, Fuel Production, Others)
6.2.4. By Region
6.2.5. By Company (2023)
6.3. Market Map
7. Asia Pacific Mixed Plastic Waste Recycling Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value & Volume
7.2. Market Share & Forecast
7.2.1. By Type of Mixed Plastic Waste
7.2.2. By Process
7.2.3. By Application
7.2.4. By Country
7.3. Asia Pacific: Country Analysis
7.3.1. China Mixed Plastic Waste Recycling Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value & Volume
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Type of Mixed Plastic Waste
7.3.1.2.2. By Process
7.3.1.2.3. By Application
7.3.2. India Mixed Plastic Waste Recycling Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value & Volume
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Type of Mixed Plastic Waste
7.3.2.2.2. By Process
7.3.2.2.3. By Application
7.3.3. Australia Mixed Plastic Waste Recycling Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value & Volume
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Type of Mixed Plastic Waste
7.3.3.2.2. By Process
7.3.3.2.3. By Application
7.3.4. Japan Mixed Plastic Waste Recycling Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value & Volume
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Type of Mixed Plastic Waste
7.3.4.2.2. By Process
7.3.4.2.3. By Application
7.3.5. South Korea Mixed Plastic Waste Recycling Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value & Volume
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Type of Mixed Plastic Waste
7.3.5.2.2. By Process
7.3.5.2.3. By Application
8. Europe Mixed Plastic Waste Recycling Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value & Volume
8.2. Market Share & Forecast
8.2.1. By Type of Mixed Plastic Waste
8.2.2. By Process
8.2.3. By Application
8.2.4. By Country
8.3. Europe: Country Analysis
8.3.1. France Mixed Plastic Waste Recycling Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value & Volume
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Type of Mixed Plastic Waste
8.3.1.2.2. By Process
8.3.1.2.3. By Application
8.3.2. Germany Mixed Plastic Waste Recycling Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value & Volume
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Type of Mixed Plastic Waste
8.3.2.2.2. By Process
8.3.2.2.3. By Application
8.3.3. Spain Mixed Plastic Waste Recycling Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value & Volume
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Type of Mixed Plastic Waste
8.3.3.2.2. By Process
8.3.3.2.3. By Application
8.3.4. Italy Mixed Plastic Waste Recycling Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value & Volume
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Type of Mixed Plastic Waste
8.3.4.2.2. By Process
8.3.4.2.3. By Application
8.3.5. United Kingdom Mixed Plastic Waste Recycling Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value & Volume
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Type of Mixed Plastic Waste
8.3.5.2.2. By Process
8.3.5.2.3. By Application
9. North America Mixed Plastic Waste Recycling Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value & Volume
9.2. Market Share & Forecast
9.2.1. By Type of Mixed Plastic Waste
9.2.2. By Process
9.2.3. By Application
9.2.4. By Country
9.3. North America: Country Analysis
9.3.1. United States Mixed Plastic Waste Recycling Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value & Volume
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Type of Mixed Plastic Waste
9.3.1.2.2. By Process
9.3.1.2.3. By Application
9.3.2. Mexico Mixed Plastic Waste Recycling Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value & Volume
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Type of Mixed Plastic Waste
9.3.2.2.2. By Process
9.3.2.2.3. By Application
9.3.3. Canada Mixed Plastic Waste Recycling Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value & Volume
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Type of Mixed Plastic Waste
9.3.3.2.2. By Process
9.3.3.2.3. By Application
10. South America Mixed Plastic Waste Recycling Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value & Volume
10.2. Market Share & Forecast
10.2.1. By Type of Mixed Plastic Waste
10.2.2. By Process
10.2.3. By Application
10.2.4. By Country
10.3. South America: Country Analysis
10.3.1. Brazil Mixed Plastic Waste Recycling Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value & Volume
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Type of Mixed Plastic Waste
10.3.1.2.2. By Process
10.3.1.2.3. By Application
10.3.2. Argentina Mixed Plastic Waste Recycling Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value & Volume
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Type of Mixed Plastic Waste
10.3.2.2.2. By Process
10.3.2.2.3. By Application
10.3.3. Colombia Mixed Plastic Waste Recycling Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value & Volume
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Type of Mixed Plastic Waste
10.3.3.2.2. By Process
10.3.3.2.3. By Application
11. Middle East and Africa Mixed Plastic Waste Recycling Market Outlook
11.1. Market Size & Forecast
11.1.1. By Value & Volume
11.2. Market Share & Forecast
11.2.1. By Type of Mixed Plastic Waste
11.2.2. By Process
11.2.3. By Application
11.2.4. By Country
11.3. MEA: Country Analysis
11.3.1. South Africa Mixed Plastic Waste Recycling Market Outlook
11.3.1.1. Market Size & Forecast
11.3.1.1.1. By Value & Volume
11.3.1.2. Market Share & Forecast
11.3.1.2.1. By Type of Mixed Plastic Waste
11.3.1.2.2. By Process
11.3.1.2.3. By Application
11.3.2. Saudi Arabia Mixed Plastic Waste Recycling Market Outlook
11.3.2.1.1. By Value & Volume
11.3.2.2. Market Share & Forecast
11.3.2.2.1. By Type of Mixed Plastic Waste
11.3.2.2.2. By Process
11.3.2.2.3. By Application
11.3.3. UAE Mixed Plastic Waste Recycling Market Outlook
11.3.3.1. Market Size & Forecast
11.3.3.1.1. By Value & Volume
11.3.3.2. Market Share & Forecast
11.3.3.2.1. By Type of Mixed Plastic Waste
11.3.3.2.2. By Process
11.3.3.2.3. By Application
12. Market Dynamics
12.1. Drivers
12.2. Challenges
13. Market Trends & Developments
13.1. Recent Developments
13.2. Product Launches
13.3. Mergers & Acquisitions
14. Global Mixed Plastic Waste Recycling Market: SWOT Analysis
15. Porter’s Five Forces Analysis
15.1. Competition in the Industry
15.2. Potential of New Entrants
15.3. Power of Suppliers
15.4. Power of Customers
15.5. Threat of Substitute Product
16. Competitive Landscape
16.1. Sulzer Limited
16.1.1. Business Overview
16.1.2. Company Snapshot
16.1.3. Products & Services
16.1.4. Financials (As Reported)
16.1.5. Recent Developments
16.2. Plastonix
16.3. Elemental Recycling, Inc.
16.4. Axens Group
16.5. BASF SE
16.6. Envision Holdings, Inc.
17. Strategic Recommendations18. About the Publisher & Disclaimer

Companies Mentioned

  • Sulzer Limited
  • Plastonix
  • Elemental Recycling, Inc.
  • Axens Group
  • BASF SE
  • Envision Holdings, Inc.

Table Information