+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

The Global Critical Materials Recovery Market 2026-2046

  • PDF Icon

    Report

  • 358 Pages
  • September 2025
  • Region: Global
  • Future Markets, Inc
  • ID: 5991163

The critical materials recovery market represents a rapidly expanding sector focused on extracting valuable metals and minerals from secondary sources such as electronic waste, spent batteries, industrial by-products, and end-of-life products. This market has emerged as a strategic response to growing supply chain vulnerabilities, geopolitical tensions surrounding mineral resources, and the urgent need for sustainable material flows in an increasingly electrified global economy.

The market is primarily driven by the accelerating demand for critical materials in clean energy technologies, electric vehicles, and advanced electronics. Lithium, cobalt, nickel, rare earth elements, platinum group metals, and semiconductor materials like gallium and indium have become essential for wind turbines, solar panels, EV batteries, and electronic devices. Traditional mining faces mounting challenges including resource depletion, environmental concerns, and concentrated supply chains often controlled by single countries, making secondary recovery increasingly attractive.

Current market forecasts suggest the global critical materials recovery sector will experience substantial growth through 2046, with lithium-ion battery recycling expected to dominate by volume and value. The market encompasses multiple material streams, with battery recycling representing the largest segment, followed by rare earth magnet recovery, semiconductor material extraction from e-waste, and platinum group metal recovery from automotive catalysts.

The recovery process typically involves two main stages: extraction and recovery. Extraction technologies include hydrometallurgy, pyrometallurgy, biometallurgy, and emerging approaches like ionic liquids and supercritical fluid extraction. Recovery technologies encompass solvent extraction, ion exchange, electrowinning, precipitation, and direct recycling methods. Each approach presents distinct advantages and challenges regarding efficiency, environmental impact, and economic viability.

Hydrometallurgical processes currently dominate commercial operations due to their versatility and lower energy requirements compared to pyrometallurgical methods. However, direct recycling technologies are gaining attention for their potential to preserve material structure and reduce processing steps, particularly for battery cathode materials and rare earth magnets.

The market can be segmented by material type, source, and recovery method. Battery recycling focuses primarily on lithium, cobalt, nickel, and manganese recovery from spent EV and consumer electronics batteries. Rare earth recovery targets neodymium, dysprosium, and terbium from permanent magnets in wind turbines and electric motors. Semiconductor recovery addresses gallium, indium, germanium, and tellurium from electronic waste and photovoltaic panels. Platinum group metal recovery concentrates on automotive catalysts and emerging hydrogen fuel cell applications.

Economic viability varies significantly across material types and regions. High-value materials like platinum group metals and rare earths generally offer better recovery economics, while lower-value materials like lithium require scale and efficiency improvements. Regulatory frameworks increasingly mandate recycling targets and extended producer responsibility, particularly in Europe, China, and parts of North America.

Government policies supporting circular economy principles and supply chain resilience are accelerating market development. The EU's Critical Raw Materials Act, US critical minerals initiatives, and China's recycling policies create regulatory momentum supporting secondary material recovery.

Key challenges include collection infrastructure development, technology scaling, economic competitiveness with primary production, and handling complex waste streams. Many critical materials exist in low concentrations within mixed waste, requiring sophisticated separation technologies and often making recovery economically marginal. The market trajectory toward 2046 suggests continued expansion driven by increasing waste availability, technological improvements, and policy support. Battery recycling is expected to scale dramatically as first-generation EV batteries reach end-of-life around 2030-2035. Rare earth recovery will likely benefit from growing magnet waste streams and supply security concerns. Success in this market requires balancing technological innovation with economic realities, while building robust collection and processing infrastructure to capture the full potential of secondary critical material resources.

The Global Critical Materials Recovery Market 2026-2046 report provides comprehensive analysis of the rapidly expanding critical raw materials recycling industry, driven by supply chain vulnerabilities, electrification trends, and circular economy imperatives. This authoritative report examines recovery technologies, market forecasts, regulatory landscapes, and competitive dynamics across lithium-ion battery recycling, rare earth element recovery, semiconductor material extraction, and platinum group metal reclamation.

Report contents include:

  • Definition and strategic importance of critical raw materials in global supply chains
  • Electronic waste as emerging source of valuable materials with recovery rate analysis
  • Electrification and renewable energy technology material requirements
  • Comprehensive regulatory landscape mapping across 11 major countries and global initiatives
  • Market drivers, restraints, and growth opportunities through 2046
  • Technology readiness evaluation and performance metrics for extraction methods
  • Critical materials value chain analysis from collection to refined product delivery
  • Economic case studies and price trend analysis for key recovered materials (2020-2024)
  • 20-year global market forecasts by material type, recovery source, and region (2026-2046)
  • Technology Analysis & Innovation
    • Comprehensive coverage of 17 critical materials including demand trends and applications
    • Primary versus secondary production comparison with environmental impact assessment
    • Advanced extraction technologies: hydrometallurgy, pyrometallurgy, biometallurgy analysis
    • Emerging technologies: ionic liquids, electroleaching, supercritical fluid extraction
    • Recovery methods: solvent extraction, ion exchange, electrowinning, precipitation, biosorption
    • Direct recycling approaches for batteries and rare earth magnets
    • SWOT analysis for each technology category with commercialization readiness assessment
  • Market Segments & Applications
    • Semiconductor materials recovery from e-waste and photovoltaic systems
    • Collection infrastructure, pre-processing technologies, and metal recovery processes
    • Lithium-ion battery recycling value chain with cathode chemistry analysis
    • Mechanical, thermal, and chemical pre-treatment methods
    • Hydrometallurgical, pyrometallurgical, and direct recycling process comparison
    • Beyond lithium-ion battery technologies including solid-state and lithium-sulfur systems
    • Rare earth element recovery from permanent magnets and electronic components
    • Long-loop versus short-loop recycling methods with hydrogen decrepitation analysis
    • Platinum group metal recovery from automotive catalysts and fuel cell systems
    • Regional market forecasts with capacity analysis and competitive landscape mapping

Company Profiles: The report features comprehensive profiles of 166 industry leaders including Accurec Recycling GmbH, ACE Green Recycling, Altilium, American Battery Technology Company (ABTC), Anhua Taisen, Aqua Metals Inc., Ascend Elements, Attero, Australian Strategic Materials Ltd (ASM), BacTech Environmental Corporation, Ballard Power Systems, BANIQL, BASF, Battery Pollution Technologies, Batx Energies Private Limited, Berkeley Energia, BHP, BMW, Botree Cycling, Brazilian Nickel PLC, Carester, Ceibo, Cheetah Resources, CATL, Cirba Solutions, Circunomics, Circu Li-ion, Circular Industries, Cyclic Materials, Cylib, Dowa Eco-System Co., Dow Chemicals, Dundee Sustainable Technologies, DuPont, EcoBat, eCobalt Solutions, EcoGraf, Econili Battery, EcoPro, Ecoprogetti, Electra Battery Materials Corporation (Electra), Electramet, Elmery, Element Zero, Emulsion Flow Technologies, Enim, EnviroMetal Technologies, Eramet, Exigo Recycling, Exitcom Recycling, ExPost Technology, Farasis Energy, First Solar, Fortum Battery Recycling, 4R Energy Corporation, Freeport McMoRan, Fluor, FLSmidth, Ganfeng Lithium, Ganzhou Cyclewell Technology Co. Ltd, Garner Products, GEM Co. Ltd., GLC Recycle Pte. Ltd., Glencore, Gotion, GREEN14, Green Graphite Technologies, Green Li-ion, Green Mineral, GS Group, Guangdong Guanghua Sci-Tech, Huayou Cobalt, Henkel, Heraeus, Huayou Recycling, HydroVolt, HyProMag Ltd, InoBat, Inmetco, Ionic Technologies, Jiecheng New Energy, JL Mag, JPM Silicon GmbH, JX Nippon Metal Mining, Keyking Recycling, Korea Zinc, Kyoei Seiko, Igneo, IXOM, Jervois Global, Jetti Resources, Kemira Oyj, Librec AG, Lithium Australia, LG Chem Ltd., Li-Cycle, Li Industries, Lithion Technologies, Lohum, MagREEsource, Mecaware, Metastable Materials, Metso Corporation, Minerva Lithium, Mining Innovation Rehabilitation and Applied Research (MIRARCO), Mitsubishi Materials, Neometals and more......
 

The report includes:

  • PDF report. Print edition also available. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

Table of Contents

1           EXECUTIVE SUMMARY
1.1        Definition and Importance of Critical Raw Materials
1.2        E-Waste as a Source of Critical Raw Materials
1.3        Electrification, Renewable and Clean Technologies
1.4        Regulatory Landscape
1.4.1     European Union
1.4.2     United States
1.4.3     China
1.4.4     Japan
1.4.5     Australia
1.4.6     Canada
1.4.7     India
1.4.8     South Korea
1.4.9     Brazil
1.4.10   Russia
1.4.11   Global Initiatives
1.5        Key Market Drivers and Restraints
1.6        The Global Critical Raw Materials Market in 2025
1.7        Critical Material Extraction Technology
1.7.1     TRL of critical material extraction technologies
1.7.2     Value Proposition
1.7.3     Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste)
1.7.4     Critical rare-earth element recovery from secondary sources
1.7.5     Li-ion battery technology metal recovery
1.7.6     Critical semiconductor materials recovery
1.7.7     Critical platinum group metal recovery
1.7.8     Critical platinum Group metal recovery
1.8        Critical Raw Materials Value Chain
1.9        The Economic Case for Critical Raw Materials Recovery
1.10      Price Trends for Key Recovered Materials (2020-2024)
1.11      Global market forecasts
1.11.1   By Material Type (2025-2046)
1.11.2   By Recovery Source (2025-2046)
1.11.3   By Region (2025-2046)

2           INTRODUCTION
2.1        Critical Raw Materials
2.2        Global situation in supply and trade
2.3        Circular economy
2.3.1     Circular use of critical raw materials
2.4        Critical and strategic raw materials used in the energy transition
2.4.1     Greening critical metals
2.5        Established and emerging secondary sources for critical material recovery
2.6        Business models for critical material recovery from secondary sources
2.7        Metals and minerals processed and extracted
2.7.1     Copper
2.7.1.1  Global copper demand and trends
2.7.1.2  Markets and applications
2.7.1.3  Copper extraction and recovery
2.7.2     Nickel
2.7.2.1  Global nickel demand and trends
2.7.2.2  Markets and applications
2.7.2.3  Nickel extraction and recovery
2.7.3     Cobalt
2.7.3.1  Global cobalt demand and trends
2.7.3.2  Markets and applications
2.7.3.3  Cobalt extraction and recovery
2.7.4     Rare Earth Elements (REE)
2.7.4.1  Global Rare Earth Elements demand and trends
2.7.4.2  Markets and applications
2.7.4.3  Rare Earth Elements extraction and recovery
2.7.4.4  Recovery of REEs from secondary resources
2.7.5     Lithium
2.7.5.1  Global lithium demand and trends
2.7.5.2  Markets and applications
2.7.5.3  Lithium extraction and recovery
2.7.6     Gold
2.7.6.1  Global gold demand and trends
2.7.6.2  Markets and applications
2.7.6.3  Gold extraction and recovery
2.7.7     Uranium
2.7.7.1  Global uranium demand and trends
2.7.7.2  Markets and applications
2.7.7.3  Uranium extraction and recovery
2.7.8     Zinc
2.7.8.1  Global Zinc demand and trends
2.7.8.2  Markets and applications
2.7.8.3  Zinc extraction and recovery
2.7.9     Manganese
2.7.9.1  Global manganese demand and trends
2.7.9.2  Markets and applications
2.7.9.3  Manganese extraction and recovery
2.7.10   Tantalum
2.7.10.1            Global tantalum demand and trends
2.7.10.2            Markets and applications
2.7.10.3            Tantalum extraction and recovery
2.7.11   Niobium
2.7.11.1            Global niobium demand and trends
2.7.11.2            Markets and applications
2.7.11.3            Niobium extraction and recovery
2.7.12   Indium
2.7.12.1            Global indium demand and trends
2.7.12.2            Markets and applications
2.7.12.3            Indium extraction and recovery
2.7.13   Gallium
2.7.13.1            Global gallium demand and trends
2.7.13.2            Markets and applications
2.7.13.3            Gallium extraction and recovery
2.7.14   Germanium
2.7.14.1            Global germanium demand and trends
2.7.14.2            Markets and applications
2.7.14.3            Germanium extraction and recovery
2.7.15   Antimony
2.7.15.1            Global antimony demand and trends
2.7.15.2            Markets and applications
2.7.15.3            Antimony extraction and recovery
2.7.16   Scandium
2.7.16.1            Global scandium demand and trends
2.7.16.2            Markets and applications
2.7.16.3            Scandium extraction and recovery
2.7.17   Graphite
2.7.17.1            Global graphite demand and trends
2.7.17.2            Markets and applications
2.7.17.3            Graphite extraction and recovery
2.8        Recovery sources
2.8.1     Primary sources
2.8.2     Secondary sources
2.8.2.1  Extraction
2.8.2.1.1           Hydrometallurgical extraction
2.8.2.1.1.1      Overview
2.8.2.1.1.2      Lixiviants
2.8.2.1.1.3      SWOT analysis
2.8.2.1.2           Pyrometallurgical extraction
2.8.2.1.2.1      Overview
2.8.2.1.2.2      SWOT analysis
2.8.2.1.3           Biometallurgy
2.8.2.1.3.1      Overview
2.8.2.1.3.2      SWOT analysis
2.8.2.1.4           Ionic liquids and deep eutectic solvents
2.8.2.1.4.1      Overview
2.8.2.1.4.2      SWOT analysis
2.8.2.1.5           Electroleaching extraction
2.8.2.1.5.1      Overview
2.8.2.1.5.2      SWOT analysis
2.8.2.1.6           Supercritical fluid extraction
2.8.2.1.6.1      Overview
2.8.2.1.6.2      SWOT analysis
2.8.2.2   Recovery
2.8.2.2.1           Solvent extraction
2.8.2.2.1.1      Overview
2.8.2.2.1.2      Rare-Earth Element Recovery
2.8.2.2.1.3      SWOT analysis
2.8.2.2.2           Ion exchange recovery
2.8.2.2.2.1      Overview
2.8.2.2.2.2      SWOT analysis
2.8.2.2.3           Ionic liquid (IL) and deep eutectic solvent (DES) recovery
2.8.2.2.3.1      Overview
2.8.2.2.3.2      SWOT analysis
2.8.2.2.4           Precipitation
2.8.2.2.4.1      Overview
2.8.2.2.4.2      Coagulation and flocculation
2.8.2.2.4.3      SWOT analysis
2.8.2.2.5           Biosorption
2.8.2.2.5.1      Overview
2.8.2.2.5.2      SWOT analysis
2.8.2.2.6           Electrowinning
2.8.2.2.6.1      Overview
2.8.2.2.6.2      SWOT analysis
2.8.2.2.7           Direct materials recovery
2.8.2.2.7.1      Overview
2.8.2.2.7.2      Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis
2.8.2.2.7.3      Rare-earth Magnet Recycling by Hydrogen Decrepitation
2.8.2.2.7.4      Direct Recycling of Li-ion Battery Cathodes by Sintering
2.8.2.2.7.5      SWOT analysis

3           CRITICAL RAW MATERIALS RECOVERY IN SEMICONDUCTORS
3.1        Critical semiconductor materials
3.2        Electronic waste (e-waste)
3.2.1     Types of Critical Raw Materials found in E-Waste
3.3        Photovoltaic and solar technologies
3.3.1     Common types of PV panels and their critical semiconductor components
3.3.2     Silicon Recovery Technology for Crystalline-Si PVs
3.3.3     Tellurium Recovery from CdTe Thin-Film Photovoltaics
3.3.4     Solar Panel Manufacturers and Recovery Rates
3.4        Concentration and value of Critical Raw Materials in E-Waste
3.5        Applications and Importance of Key Critical Raw Materials
3.6        Waste Recycling and Recovery Processes
3.7        Collection and Sorting Infrastructure
3.8        Pre-Processing Technologies
3.9        Metal Recovery Technologies
3.9.1     Pyrometallurgy
3.9.2     Hydrometallurgy
3.9.3     Biometallurgy
3.9.4     Supercritical Fluid Extraction
3.9.5     Electrokinetic Separation
3.9.6     Mechanochemical Processing
3.10      Global market 2025-2046
3.10.1   Ktonnes
3.10.2   Revenues
3.10.3   Regional

4           CRITICAL RAW MATERIALS RECOVERY IN LI-ION BATTERIES
4.1        Critical Li-ion Battery Metals
4.2        Critical Li-ion Battery Technology Metal Recovery
4.3        Lithium-Ion Battery recycling value chain
4.4        Black mass powder
4.5        Recycling different cathode chemistries
4.6        Preparation
4.7        Pre-Treatment
4.7.1     Discharging
4.7.2     Mechanical Pre-Treatment
4.7.3     Thermal Pre-Treatment
4.8        Comparison of recycling techniques
4.9        Hydrometallurgy
4.9.1     Method overview
4.9.1.1  Solvent extraction
4.9.2     SWOT analysis
4.10      Pyrometallurgy
4.10.1   Method overview
4.10.2   SWOT analysis
4.11      Direct recycling
4.11.1   Method overview
4.11.1.1            Electrolyte separation
4.11.1.2            Separating cathode and anode materials
4.11.1.3            Binder removal
4.11.1.4            Relithiation
4.11.1.5            Cathode recovery and rejuvenation
4.11.1.6            Hydrometallurgical-direct hybrid recycling
4.11.2  SWOT analysis
4.12     Other methods
4.12.1  Mechanochemical Pretreatment
4.12.2  Electrochemical Method
4.12.3  Ionic Liquids
4.13     Recycling of Specific Components
4.13.1  Anode (Graphite)
4.13.2  Cathode
4.13.3  Electrolyte
4.14     Recycling of Beyond Li-ion Batteries
4.14.1  Conventional vs Emerging Processes
4.14.2  Li-Metal batteries
4.14.3  Lithium sulfur batteries (Li-S)
4.14.4  All-solid-state batteries (ASSBs)
4.15     Economic case for Li-ion battery recycling
4.15.1  Metal prices
4.15.2  Second-life energy storage
4.15.3  LFP batteries
4.15.4  Other components and materials
4.15.5  Reducing costs
4.16     Competitive landscape
4.17     Global capacities, current and planned
4.18     Future outlook
4.19     Global market 2025-2046
4.19.1  Chemistry
4.19.2  Ktonnes
4.19.3  Revenues
4.19.4  Regional

5          CRITICAL RARE-EARTH ELEMENT RECOVERY
5.1       Introduction
5.2       Permanent magnet applications
5.3       Recovery technologies
5.3.1    Long-loop and short-loop recovery methods
5.3.2    Hydrogen decrepitatio
5.3.3    Powder metallurgy (PM)
5.3.4    Long-loop magnet recycling
5.3.5    Solvent Extraction
5.3.6    Ion Exchange Resin Chromatography
5.3.7    Electrolysis and Metallothermic Reduction
5.4       Technologies for recycling rare earth magnets from waste
5.5       Markets
5.5.1    Rare-earth magnet market
5.5.2    Rare-earth magnet recovery technology
5.6       Global market 2025-2046
5.6.1    Ktonnes
5.6.2    Revenues

6          CRITICAL PLATINUM GROUP METAL RECOVERY
6.1       Introduction
6.2       Supply chain
6.3       Prices
6.4       PGM Recovery
6.5       PGM recovery from spent automotive catalysts
6.6       PGM recovery from hydrogen electrolyzers and fuel cells
6.6.1    Green hydrogen market
6.6.2    PGM recovery from hydrogen-related technologies
6.6.3    Catalyst Coated Membranes (CCMs)
6.6.4    Fuel cell catalysts
6.6.5    Emerging technologies
6.6.5.1 Microwave-assisted Leaching
6.6.5.2 Supercritical Fluid Extraction
6.6.5.3 Bioleaching
6.6.5.4 Electrochemical Recovery
6.6.5.5 Membrane Separation
6.6.5.6 Ionic Liquids
6.6.5.7 Photocatalytic Recovery
6.6.6    Sustainability of the hydrogen economy
6.7       Markets
6.8       Global market 2025-2046
6.8.1    Ktonnes
6.8.2    Revenues

7          COMPANY PROFILES (166 company profiles)
8          APPENDICES
8.1       Research Methodology
8.2       Glossary of Terms
8.3       List of Abbreviations

9          REFERENCES
LIST OF TABLES
Table 1. List of Key Critical Raw Materials and Their Primary Applications.
Table 2. Regulatory Landscape for Critical Raw Materials by Country/Region.
Table 3. Key Market Drivers and Restraints in Critical Raw Materials Recovery.
Table 4. Global Production of Critical Materials by Country (Top 10 Countries).
Table 5. Projected Demand for Critical Materials in Clean Energy Technologies (2024-2046).
Table 6. Value Proposition for Critical Material Extraction Technologies.
Table 7. Critical Material Extraction Methods Evaluated by Key Performance Metrics.
Table 8. Critical Rare-Earth Element Recovery Technologies from Secondary Sources.
Table 9. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability.
Table 10. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications.
Table 11. Critical Semiconductor Material Recovery from Secondary Sources.
Table 12. Critical Platinum Group Metal Recovery.
Table 13. Price Trends for Key Recovered Materials (2020-2024).
Table 14. Global critical raw materials recovery market by material types (2025-2046),  ktonnes.
Table 15. Global Critical Raw Materials Recovery Market by Material Types (2025-2046), by Value (Billions USD).
Table 16. Global critical raw materials recovery market by recovery source (2025-2046), in ktonnes.
Table 17. Global critical raw materials recovery market by region (2025-2046), by ktonnes.
Table 18. Global Critical Raw Materials Recovery Market by Region (2025-2046), by Value (Billions USD).
Table 19. Primary global suppliers of critical raw materials.
Table 20. Current contribution of recycling to meet global demand of CRMs.
Table 21. Applications and Importance of Key Critical Raw Materials.
Table 22. Comparison of Recovery Rates for Different Critical Materials.
Table 23. Established and emerging secondary sources for critical material recovery.
Table 24. Business models for critical material recovery from secondary sources.
Table 25. Markets and applications: copper.
Table 26. Technologies and Techniques for Copper Extraction and Recovery.
Table 27. Markets and applications: nickel.
Table 28. Technologies and Techniques for Nickel Extraction and Recovery.
Table 29. Markets and applications: cobalt.
Table 30. Technologies and Techniques for Cobalt Extraction and Recovery.
Table 31. Markets and applications: rare earth elements.
Table 32. Technologies and Techniques for Rare Earth Elements Extraction and Recovery.
Table 33. Markets and applications: lithium.
Table 34. Technologies and Techniques for Lithium Extraction and Recovery.
Table 35. Markets and applications: gold.
Table 36. Technologies and Techniques for Gold Extraction and Recovery.
Table 37. Markets and applications: uranium.
Table 38. Technologies and Techniques for Uranium Extraction and Recovery.
Table 39. Markets and applications: zinc.
Table 40. Zinc Extraction and Recovery Technologies.
Table 41. Markets and applications: manganese.
Table 42. Manganese Extraction and Recovery Technologies.
Table 43. Markets and applications: tantalum.
Table 44. Tantalum Extraction and Recovery Technologies.
Table 45. Markets and applications: niobium.
Table 46. Niobium Extraction and Recovery Technologies.
Table 47. Markets and applications: indium.
Table 48. Indium Extraction and Recovery Technologies.
Table 49. Markets and applications: gallium.
Table 50. Gallium Extraction and Recovery Technologies.
Table 51. Markets and applications: germanium.
Table 52. Germanium Extraction and Recovery Technologies.
Table 53. Markets and applications: antimony.
Table 54. Antimony Extraction and Recovery Technologies.
Table 55. Markets and applications: scandium.
Table 56. Scandium Extraction and Recovery Technologies.
Table 57. Graphite Markets and Applications.
Table 58. Graphite Extraction and Recovery Techniques and Technologies.
Table 59. Comparison of Primary vs Secondary Production for Key Materials.
Table 60. Environmental Impact Comparison: Primary vs Secondary Production.
Table 61. Technologies for critical material recovery from secondary sources.
Table 62. Technologies for critical raw material recovery from secondary sources.
Table 63. Critical raw material extraction technologies.
Table 64. Pyrometallurgical extraction methods.
Table 65. Bioleaching processes and their applicability to critical materials.
Table 66. Comparative analysis of metal recovery technologies.
Table 67. Technology readiness of critical material recovery technologies by secondary material sources.
Table 68. Technology readiness of critical semiconductor recovery technologies.
Table 69. Critical Semiconductors Applications and Recycling Rates.
Table 70. Types of critical raw Materials found in E-Waste.
Table 71. E-waste Generation and Recycling Rates.
Table 72. Critical Semiconductor Recovery from Photovoltaics.
Table 73. Solar Panel Manufacturers and Their Recycling Capabilities.
Table 74. Concentration and Value of Critical Raw Materials in E-waste.
Table 75. Critical Semiconductor Materials and Their Applications.
Table 76. Critical Materials Waste Recycling and Recovery Processes.
Table 77. Collection and Sorting Infrastructure for Critical Materials Recycling.
Table 78. Pre-Processing Technologies for Critical Materials Recycling.
Table 79. Global recovered critical raw electronics material, 2025-2046 (ktonnes).
Table 80. Global recovered critical raw electronics material market, 2025-2046 (billions USD).
Table 81. Recovered critical raw electronics material market, by region, 2025-2046 (ktonnes).
Table 82. Drivers for Recycling Li-ion Batteries.
Table 83. Li-ion Battery Metal Recovery Technologies.
Table 84. Li-ion battery recycling value chain.
Table 85. Typical lithium-ion battery recycling process flow.
Table 86. Main feedstock streams that can be recycled for lithium-ion batteries.
Table 87. Comparison of LIB recycling methods.
Table 88. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.
Table 89. Economic assessment of battery recycling options.
Table 90. Retired lithium-batteries.
Table 91. Global capacities, current and planned (tonnes/year).
Table 92. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2025-2046.
Table 93. Global Li-ion battery recycling market, 2025-2046 (ktonnes).
Table 94. Global Li-ion battery recycling market, 2025-2046 (billions USD).
Table 95. Li-ion battery recycling market, by region, 2025-2046 (ktonnes).
Table 96. Critical rare-earth elements markets and applications.
Table 97. Primary and Secondary Material Streams for Rare-Earth Element Recovery.
Table 98. Critical rare-earth element recovery technologies.
Table 99. Rare Earth Element Content in Secondary Material Sources.
Table 100. Comparison of Short-loop and Long-loop Rare Earth Recovery Methods.
Table 101. Long-loop Rare-Earth Magnet Recycling Technologies.
Table 102. Technologies for recycling rare earth magnets from waste.
Table 103. Rare Earth Element Demand by Application.
Table 104. Global rare-earth magnet key players in a table
Table 105. Rare Earth Magnet Recycling Value Chain.
Table 106.Technology readiness of REE recovery technologies in a table
Table 107. Global recovered critical rare-earth element market, 2025-2046 (ktonnes)
Table 108. Global recovered critical rare-earth element market, 2025-2046 (billions USD).
Table 109. Global PGM Demand Segmented by Application.
Table 110. Critical Platinum Group Metals: Applications and Recycling Rates.
Table 111. Technology Readiness of Critical PGM Recovery from Secondary Sources.
Table 112. Automotive Catalyst Recycling Players.
Table 113. Challenges in transitioning to new PEMEL catalysts and the role of PGM recycling in a table.
Table 114. Key Suppliers of Catalysts for Fuel Cells.
Table 115. Global recovered critical platinum group metal market, 2025-2046 (ktonnes).
Table 116. Global recovered critical platinum group metal market, 2025-2046 (billions USD).
Table 117. Glossary of terms.
Table 118. List of Abbreviations.

LIST OF FIGURES
Figure 1. TRL of critical material extraction technologies.
Figure 2. Critical Raw Materials Value Chain.
Figure 3. Global critical raw materials recovery market by material types (2025-2046), by ktonnes.
Figure 4. Global Critical Raw Materials Recovery Market by Material Types (2025-2046), by Value (Billions USD).
Figure 5. Global critical raw materials recovery market by recovery source (2025-2046), by ktonnes.
Figure 6. Global Critical Raw Materials Recovery Market by Recovery Source (2025-2046), by Value (Billions USD).
Figure 7. Global critical raw materials recovery market by region (2025-2046), by ktonnes.
Figure 8. Global Critical Raw Materials Recovery Market by Region (2025-2046), by Value (Billions USD).
Figure 9. Conceptual diagram illustrating the Circular Economy.
Figure 10. Circular Economy Model for Critical Materials.
Figure 11. Copper demand outlook.
Figure 12. Global nickel demand outlook.
Figure 13. Global cobalt demand outlook.
Figure 14. Global lithium demand outlook.
Figure 15. Global graphite demand outlook.
Figure 16.  Solvent extraction (SX) in hydrometallurgy.
Figure 17. SWOT analysis: hydrometallurgical extraction.
Figure 18. SWOT analysis: pyrometallurgical extraction of critical materials.
Figure 19. SWOT analysis: biometallurgy for critical material extraction.
Figure 20. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction.
Figure 21. SWOT analysis: electrochemical leaching for critical material extraction.
Figure 22. SWOT analysis: supercritical fluid extraction technology.
Figure 23. SWOT analysis: solvent extraction recovery technology.
Figure 24. SWOT analysis: ion exchange resin recovery technology.
Figure 25. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery.
Figure 26. SWOT analysis: precipitation for critical material recovery.
Figure 27. SWOT analysis: biosorption for critical material recovery.
Figure 28. SWOT analysis: electrowinning for critical material recovery.
Figure 29. SWOT analysis: direct critical material recovery technology.
Figure 31. Global  recovered critical raw electronics materials market, 2025-2046 (ktonnes)
Figure 32. Global  recovered critical raw electronics material market, 2025-2046 (Billion USD).
Figure 33. Recovered critical raw electronics material market, by region, 2025-2046 (ktonnes).
Figure 34. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials.
Figure 35. Mechanical separation flow diagram.
Figure 36. Recupyl mechanical separation flow diagram.
Figure 37. Flow chart of recycling processes of lithium-ion batteries (LIBs).
Figure 38. Hydrometallurgical recycling flow sheet.
Figure 39. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling.
Figure 40. Umicore recycling flow diagram.
Figure 41. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling.
Figure 42. Schematic of direct recyling process.
Figure 43. SWOT analysis for Direct Li-ion Battery Recycling.
Figure 44. Schematic diagram of a Li-metal battery.
Figure 45. Schematic diagram of Lithium-sulfur battery.
Figure 46. Schematic illustration of all-solid-state lithium battery.
Figure 47.  Global scrapped EV (BEV+PHEV) forecast to 2040.
Figure 48. Global Li-ion battery recycling market, 2025-2046 (chemistry).
Figure 49. Global Li-ion battery recycling market, 2025-2046 (ktonnes)
Figure 50. Global Li-ion battery recycling market, 2025-2046 (Billion USD).
Figure 51. Global Li-ion battery recycling market, by region, 2025-2046 (ktonnes).
Figure 52. Global recovered critical rare-earth element market, 2025-2046 (ktonnes)
Figure 53. Global recovered critical rare-earth element market, 2025-2046 (Billion USD).
Figure 54. Global recovered critical platinum group metal market, 2025-2046 (ktonnes)
Figure 55. Global recovered critical platinum group metal market, 2025-2046 (Billion USD).

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • Accurec Recycling GmbH
  • ACE Green Recycling
  • Altilium
  • American Battery Technology Company (ABTC)
  • Anhua Taisen
  • Aqua Metals Inc.
  • Ascend Elements
  • Attero
  • Australian Strategic Materials Ltd (ASM)
  • BacTech Environmental Corporation
  • Ballard Power Systems
  • BANIQL
  • BASF
  • Battery Pollution Technologies
  • Batx Energies Private Limited
  • Berkeley Energia
  • BHP
  • BMW
  • Botree Cycling
  • Brazilian Nickel PLC
  • Carester
  • Ceibo
  • Cheetah Resources
  • CATL
  • Cirba Solutions
  • Circunomics
  • Circu Li-ion
  • Circular Industries
  • Cyclic Materials
  • Cylib
  • Dowa Eco-System Co.
  • Dow Chemicals
  • Dundee Sustainable Technologies
  • DuPont
  • EcoBat
  • eCobalt Solutions
  • EcoGraf
  • Econili Battery
  • EcoPro
  • Ecoprogetti
  • Electra Battery Materials Corporation (Electra)
  • Electramet
  • Elmery
  • Element Zero
  • Emulsion Flow Technologies
  • Enim
  • EnviroMetal Technologies
  • Eramet
  • Exigo Recycling
  • Exitcom Recycling
  • ExPost Technology
  • Farasis Energy
  • First Solar
  • Fortum Battery Recycling
  • 4R Energy Corporation
  • Freeport McMoRan
  • Fluor
  • FLSmidth
  • Ganfeng Lithium
  • Ganzhou Cyclewell Technology Co. Ltd
  • Garner Products
  • GEM Co. Ltd.
  • GLC Recycle Pte. Ltd.
  • Glencore
  • Gotion
  • GREEN14
  • Green Graphite Technologies
  • Green Li-ion
  • Green Mineral
  • GS Group
  • Guangdong Guanghua Sci-Tech
  • Huayou Cobalt
  • Henkel
  • Heraeus
  • Huayou Recycling
  • HydroVolt
  • HyProMag Ltd
  • InoBat
  • Inmetco
  • Ionic Technologies
  • Jiecheng New Energy
  • JL Mag
  • JPM Silicon GmbH
  • JX Nippon Metal Mining
  • Keyking Recycling
  • Korea Zinc
  • Kyoei Seiko
  • Igneo
  • IXOM
  • Jervois Global
  • Jetti Resources
  • Kemira Oyj
  • Librec AG
  • Lithium Australia
  • LG Chem Ltd.
  • Li-Cycle
  • Li Industries
  • Lithion Technologies
  • Lohum
  • MagREEsource
  • Mecaware
  • Metastable Materials
  • Metso Corporation
  • Minerva Lithium
  • Mining Innovation Rehabilitation and Applied Research (MIRARCO)
  • Mitsubishi Materials
  • Neometals