+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

The Global Quantum Sensors Market 2026-2046

  • PDF Icon

    Report

  • 298 Pages
  • February 2026
  • Region: Global
  • Future Markets, Inc
  • ID: 6007463

Quantum Sensing Technologies Set to Transform Healthcare Defence Telecommunications and Automotive Industries With Unprecedented Measurement Precision

Quantum sensing represents a new generation of precision measurement technologies that exploit second-generation quantum mechanical phenomena - superposition, entanglement, and quantum coherence - to surpass the fundamental limits of classical measurement systems. By using quantum particles such as photons or atoms as sensing elements, these devices detect extraordinarily small changes in physical quantities including magnetic fields, gravity, rotation, temperature, time, and electromagnetic spectra, often at the nanoscale and frequently through non-invasive means.

The quantum sensors landscape encompasses a diverse range of device types, including atomic clocks, superconducting quantum interference devices (SQUIDs), optically pumped magnetometers (OPMs), nitrogen-vacancy (NV) centre diamond sensors, quantum gravimeters, quantum gyroscopes and accelerometers, single photon detectors, and quantum radio frequency (RF) sensors. Each platform offers distinct advantages across a broad spectrum of end-use industries spanning healthcare and life sciences, defence and military, environmental monitoring, telecommunications, oil and gas exploration, financial services, and autonomous navigation.

The market is currently transitioning from an emerging phase to an active growth phase, a shift expected to consolidate over the next five to ten years. Sensors are achieving improved precision, stability, and form factors suitable for commercial deployment, while economies of scale and advances in integrated photonics, MEMS vapour cell fabrication, and solid-state laser technologies are steadily reducing costs. Industry roadmaps project that commercial unit prices will fall below $10,000 by approximately 2027-2028, with costs dropping below $5,000 per unit by 2030, enabling wider industrial adoption and integration into high-end commercial equipment.

Miniaturisation is a defining trend. Quantum RF sensors are approaching smartphone-sized packages, and prototype chip-scale atomic magnetometers have already demonstrated volumes below 100 cm³. Further reductions to credit card-sized packages are anticipated by 2030, with fully integrated chip-scale solutions below 1 cm³ projected by the mid-2030s. These advances are underpinned by the transition from discrete optical components to integrated photonic circuits, which significantly reduces both size and manufacturing cost.

The atomic clocks segment is the most commercially mature category. Growth across the broader market is driven by 5G and future 6G infrastructure expansion demanding precision synchronisation, autonomous vehicle deployment requiring quantum-enhanced LiDAR and GPS-independent navigation, defence applications in GPS-denied environments, and emerging quantum technology ecosystems that create synergies between quantum sensing, computing, and communication. Major technology firms including IBM, Google, Microsoft, and Intel continue to dedicate substantial in-house R&D budgets to quantum initiatives, while government programmes worldwide provide critical support for both fundamental research and commercialisation efforts.

Key challenges remain. Manufacturing at scale requires extreme nanoscale precision, high-purity materials with precisely controlled defects, and complex integration of quantum components with control electronics. Competition from well-established conventional sensors, regulatory uncertainty, security and privacy concerns, and the high cost of early-stage systems all present headwinds.

Looking ahead, the medium-term outlook (2028-2031) anticipates expansion into industrial process control and environmental monitoring, integration with 5G/6G networks, and the establishment of quantum sensing industry standards. The longer-term vision (2032 and beyond) encompasses widespread adoption in automotive and aerospace sectors, the emergence of quantum sensing as a service, integration into consumer electronics and IoT devices, and ultimately the development of global quantum sensing networks for applications ranging from climate monitoring to personalised medicine.

The global quantum sensors market is poised for significant growth over the next two decades as miniaturisation, falling costs, and expanding end-use applications accelerate adoption across defence, healthcare, telecommunications, oil and gas, environmental monitoring, transportation, and financial services. This comprehensive market research report provides detailed technology analysis, market forecasts, company profiles, and strategic roadmaps covering the quantum sensors industry from 2026 through 2046.

Report contents include:

  • In-depth executive summary covering the first and second quantum revolutions, the current quantum technology market landscape, key developments, and industry developments 2024-2026
  • Detailed investment landscape analysis including quantum technology investments from 2012 to 2025 and major funding rounds in 2024-2025
  • Global government initiatives and national quantum programmes driving market growth
  • Comprehensive market drivers, technology challenges, and SWOT analyses for the quantum sensors market and individual sensor types
  • Technology trends and innovations including miniaturisation roadmaps, cost reduction trajectories, and chip-scale quantum sensor development
  • Market forecasts and future outlook segmented into short-term (2025-2027), medium-term (2028-2031), and long-term (2032-2046) projections
  • Global market forecasts for quantum sensors by sensor type, volume, sensor price, and end-use industry from 2018 to 2046
  • Detailed technology overviews, operating principles, applications, roadmaps, and market forecasts for atomic clocks (including bench/rack-scale and chip-scale), quantum magnetic field sensors (SQUIDs, optically pumped magnetometers, tunnelling magnetoresistance sensors, and nitrogen-vacancy centre diamond sensors), quantum gravimeters, quantum gyroscopes and accelerometers, quantum image sensors, quantum radar, quantum chemical sensors, quantum RF field sensors (including Rydberg atom and NV centre diamond platforms), and quantum NEMS and MEMS
  • Benchmarking of quantum sensor technologies including technology readiness levels, comparative performance metrics, and current R&D focus areas
  • Analysis of quantum sensing components including vapour cells, VCSELs, control electronics, and integrated photonic technologies
  • International standardisation landscape covering ISO/IEC, CEN-CENELEC, IEEE, and national metrology institutes
  • Emerging applications and use cases including quantum navigation, quantum sensing as a service, and integration with 5G/6G networks
  • End-use industry analysis spanning healthcare and life sciences, defence and military, environmental monitoring, oil and gas, transportation and automotive, finance, agriculture, construction, and mining
  • Case studies in healthcare early disease detection, military navigation systems, environmental monitoring, high-frequency trading, and quantum internet secure communication networks
  • Over 85 company profiles and 89 tables and 50 figures

Table of Contents

1 EXECUTIVE SUMMARY
1.1 First and second quantum revolutions
1.2 Current quantum technology market landscape
1.2.1 Key developments
1.3 Investment landscape
1.4 Global government initiatives
1.5 Industry developments 2024-2026
1.6 Market Drivers
1.7 Market and technology challenges
1.8 Technology trends and innovations
1.9 Market forecast and future outlook
1.9.1 Short-term Outlook (2025-2027)
1.9.2 Medium-term Outlook (2028-2031)
1.9.3 Long-term Outlook (2032-2046)
1.10 Emerging applications and use cases
1.11 Quantum Navigation
1.12 Benchmarking of Quantum Sensor Technologies
1.13 Potential Disruptive Technologies
1.14 Market Map
1.15 Global market for quantum sensors
1.15.1 By sensor type
1.15.2 By volume
1.15.3 By sensor price
1.15.4 By end use industry
1.16 Quantum Sensors Roadmapping
1.16.1 Atomic clocks
1.16.2 Quantum magnetometers
1.16.3 Quantum gravimeters
1.16.4 Inertial quantum sensors
1.16.5 Quantum RF sensors
1.16.6 Single photon detectors
1.17 International Standardization Landscape
1.17.1 ISO/IEC JTC 3 - Quantum Technologies
1.17.2 CEN-CENELEC JTC 22 - Quantum Technologies (Europe)
1.17.3 IEEE Standards Association
1.17.4 Standardization Gaps Identified for Quantum Sensors
1.17.5 National Metrology Institutes (NMIs)

2 INTRODUCTION
2.1 What is quantum sensing?
2.2 Types of quantum sensors
2.2.1 Comparison between classical and quantum sensors
2.3 Quantum Sensing Principles
2.4 Quantum Phenomena
2.5 Technology Platforms
2.6 Quantum Sensing Technologies and Applications
2.7 Value proposition for quantum sensors
2.8 SWOT Analysis

3 QUANTUM SENSING COMPONENTS
3.1 Overview
3.2 Specialized components
3.3 Vapor cells
3.3.1 Overview
3.3.2 Manufacturing
3.3.3 Alkali azides
3.3.4 Companies
3.4 VCSELs
3.4.1 Overview
3.4.2 Quantum sensor miniaturization
3.4.3 Companies
3.5 Control electronics for quantum sensors
3.6 Integrated photonic and semiconductor technologies
3.7 Challenges
3.8 Roadmap

4 ATOMIC CLOCKS
4.1 Technology Overview
4.1.1 Hyperfine energy levels
4.1.2 Self-calibration
4.2 Markets
4.3 Roadmap
4.4 High frequency oscillators
4.4.1 Emerging oscillators
4.5 New atomic clock technologies
4.6 Optical atomic clocks
4.6.1 Chip-scale optical clocks
4.6.2 Rack-sized atomic clocks
4.7 Challenge in atomic clock miniaturization
4.8 Companies
4.9 SWOT analysis
4.10 Market forecasts
4.10.1 Total market
4.10.2 Bench/rack-scale atomic clocks
4.10.3 Chip-scale atomic clocks

5 QUANTUM MAGNETIC FIELD SENSORS
5.1 Technology overview
5.1.1 Measuring magnetic fields
5.1.2 Sensitivity
5.1.3 Motivation for use
5.2 Market opportunity
5.3 Performance
5.4 Superconducting Quantum Interference Devices (Squids)
5.4.1 Introduction
5.4.2 Operating principle
5.4.3 Applications
5.4.4 Companies
5.4.5 SWOT analysis
5.5 Optically Pumped Magnetometers (OPMs)
5.5.1 Introduction
5.5.2 Operating principle
5.5.3 Applications
5.5.3.1 Miniaturization
5.5.3.2 Navigation
5.5.4 MEMS manufacturing
5.5.5 Companies
5.5.6 SWOT analysis
5.6 Tunneling Magneto Resistance Sensors (TMRs)
5.6.1 Introduction
5.6.2 Operating principle
5.6.3 Applications
5.6.4 Companies
5.6.5 SWOT analysis
5.7 Nitrogen Vacancy Centers (N-V Centers)
5.7.1 Introduction
5.7.2 Operating principle
5.7.3 Applications
5.7.4 Synthetic diamonds
5.7.5 Companies
5.7.6 SWOT analysis
5.8 Market forecasts

6 QUANTUM GRAVIMETERS
6.1 Technology overview
6.2 Operating principle
6.3 Applications
6.3.1 Commercial deployment
6.3.2 Comparison with other technologies
6.4 Roadmap
6.5 Companies
6.6 Market forecasts
6.7 SWOT analysis

7 QUANTUM GYROSCOPES
7.1 Technology description
7.1.1 Inertial Measurement Units (IMUs)
7.1.1.1 Atomic quantum gyroscopes
7.1.1.2 Quantum accelerometers
7.1.1.2.1 Operating Principles
7.1.1.2.2 Grating magneto-optical traps (MOTs)
7.1.1.2.3 Applications
7.1.1.2.4 Companies
7.2 Applications
7.3 Roadmap
7.4 Companies
7.5 Market forecasts
7.6 SWOT analysis

8 QUANTUM IMAGE SENSORS
8.1 Technology overview
8.1.1 Single photon detectors
8.1.2 Semiconductor single photon detectors
8.1.3 Superconducting single photon detectors
8.2 Applications
8.2.1 Single Photon Avalanche Diodes with Time-Correlated Single Photon Counting (TCSPC)
8.2.2 Bioimaging
8.3 SWOT analysis
8.4 Market forecast
8.5 Companies

9 QUANTUM RADAR
9.1 Technology overview
9.1.1 Quantum entanglement
9.1.2 Ghost imaging
9.1.3 Quantum holography
9.2 Applications
9.2.1 Cancer detection
9.2.2 Glucose Monitoring

10 QUANTUM CHEMICAL SENSORS
10.1 Technology overview
10.2 Commercial activities

11 QUANTUM RADIO FREQUENCY (RF) FIELD SENSORS
11.1 Overview
11.2 Types of Quantum RF Sensors
11.3 Rydberg Atom Based Electric Field Sensors and Radio Receivers
11.3.1 Principles
11.3.2 Commercialization
11.4 Nitrogen-Vacancy Centre Diamond Electric Field Sensors and Radio Receivers
11.4.1 Principles
11.4.2 Applications
11.5 Market and applications
11.6 Market forecast

12 QUANTUM NEMS AND MEMS
12.1 Technology overview
12.2 Types
12.3 Applications
12.4 Challenges

13 CASE STUDIES
13.1 Quantum Sensors in Healthcare: Early Disease Detection
13.2 Military Applications: Enhanced Navigation Systems
13.3 Environmental Monitoring
13.4 Financial Sector: High-Frequency Trading
13.5 Quantum Internet: Secure Communication Networks

14 END-USE INDUSTRIES
14.1 Healthcare and Life Sciences
14.1.1 Medical Imaging
14.1.2 Drug Discovery
14.1.3 Biosensing
14.2 Defence and Military
14.2.1 Navigation Systems
14.2.2 Underwater Detection
14.2.3 Communication Systems
14.3 Environmental Monitoring
14.3.1 Climate Change Research
14.3.2 Geological Surveys
14.3.3 Natural Disaster Prediction
14.3.4 Other Applications
14.4 Oil and Gas
14.4.1 Exploration and Surveying
14.4.2 Pipeline Monitoring
14.4.3 Other Applications
14.5 Transportation and Automotive
14.5.1 Autonomous Vehicles
14.5.2 Aerospace Navigation
14.5.3 Other Applications
14.6 Other Industries
14.6.1 Finance and Banking
14.6.2 Agriculture
14.6.3 Construction
14.6.4 Mining

15 COMPANY PROFILES (86 COMPANY PROFILES)
16 APPENDICES
16.1 Research Methodology
16.2 Glossary of Terms
16.3 List of Abbreviations

17 REFERENCES
LIST OF TABLES
Table 1. First and second quantum revolutions
Table 2. Quantum Sensing Technologies and Applications
Table 3. Quantum Technology investments 2012-2025 (millions USD), total
Table 4. Major Quantum Technologies Investments 2024-2025
Table 5. Global government initiatives in quantum technologies
Table 6. Quantum Sensor industry developments 2024-2026
Table 7. Market Drivers for Quantum Sensors
Table 8. Market and technology challenges in quantum sensing
Table 9. Technology Trends and Innovations in Quantum Sensors
Table 10. Emerging Applications and Use Cases
Table 11. Benchmarking of Quantum Sensing Technologies by Type
Table 12. Performance Metrics by Application Domain
Table 13. Technology Readiness Levels (TRL) and Commercialization Status
Table 14. Comparative Performance Metrics
Table 15.Current Research and Development Focus Areas
Table 16. Potential Disruptive Technologies
Table 17. Global market for quantum sensors, by types, 2018-2046 (Millions USD)
Table 18. Global market for quantum sensors, by volume (Units), 2018-2046
Table 19. Global market for quantum sensors, by sensor price, 2025-2046 (Units)
Table 20. Global market for quantum sensors, by end use industry, 2018-2046 (Millions USD)
Table 21.Types of Quantum Sensors
Table 22. Comparison between classical and quantum sensors
Table 23. Applications in quantum sensors
Table 24. Technology approaches for enabling quantum sensing
Table 25. Key technology platforms for quantum sensing
Table 26. Quantum sensing technologies and applications
Table 27. Value proposition for quantum sensors
Table 28. Components for quantum sensing
Table 29. Specialized components for atomic and diamond-based quantum sensing
Table 30. Companies in Chip-Scale Vapor Cell Development
Table 31. Companies in VCSELs for Quantum Sensing
Table 32. Challenges for Quantum Sensor Components
Table 33. Key challenges and limitations of quartz crystal clocks vs. atomic clocks
Table 34. Atomic clocks End users and addressable markets
Table 35. Key Market Inflection Points and Technology Transitions
Table 36. New modalities being researched to improve the fractional uncertainty of atomic clocks
Table 37. Companies developing high-precision quantum time measurement
Table 38. Key players in atomic clocks
Table 39. Global market for atomic clocks 2025-2046 (Billions USD)
Table 40. Global market for Bench/rack-scale atomic clocks, 2026-2046 (Millions USD)
Table 41. Global market for Chip-scale atomic clocks, 2026-2046 (Millions USD)
Table 42. Comparative analysis of key performance parameters and metrics of magnetic field sensors
Table 43. Types of magnetic field sensors
Table 44. Market opportunity for different types of quantum magnetic field sensors
Table 45. Performance of magnetic field sensors
Table 46. Applications of SQUIDs
Table 47. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices)
Table 48. Key players in SQUIDs
Table 49. Applications of optically pumped magnetometers (OPMs)
Table 50. MEMS Manufacturing Techniques for Miniaturized OPMs
Table 51. Key players in Optically Pumped Magnetometers (OPMs)
Table 52. Applications for TMR (Tunneling Magnetoresistance) sensors
Table 53. Market players in TMR (Tunneling Magnetoresistance) sensors
Table 54. Applications of N-V center magnetic field centers
Table 55. Quantum Grade Diamond
Table 56. Synthetic Diamond Value Chain for Quantum Sensing
Table 57. Key players in N-V center magnetic field sensors
Table 58. Global market forecasts for quantum magnetic field sensors, by type, 2025-2046 (Millions USD)
Table 59. Applications of quantum gravimeters
Table 60. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping
Table 61. Key players in quantum gravimeters
Table 62. Global market for Quantum gravimeters 2025-2046 (Millions USD)
Table 63. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes
Table 64. Comparison of Quantum Gyroscopes with MEMS Gyroscopes and Optical Gyroscopes
Table 65. Key Players in Quantum Accelerometers
Table 66. Markets and applications for quantum gyroscopes
Table 67. Key players in quantum gyroscopes
Table 68. Global market for for quantum gyroscopes and accelerometers 2026-2046 (millions USD)
Table 69. Types of quantum image sensors and their key features
Table 70. Applications of quantum image sensors
Table 71. SPAD Bioimaging Applications
Table 72. Global market for quantum image sensors 2025-2046 (Millions USD)
Table 73. Key players in quantum image sensors
Table 74. Comparison of quantum radar versus conventional radar and lidar technologies
Table 75. Applications of quantum radar
Table 76. Value Proposition of Quantum RF Sensors
Table 77. Types of Quantum RF Sensors
Table 78. Markets for Quantum RF Sensors
Table 79. Technology Transition Milestones
Table 80. Application-Specific Adoption Timeline
Table 81. Global market for quantum RF sensors 2026-2046 (Millions USD)
Table 82.Types of Quantum NEMS and MEMS
Table 83. Quantum Sensors in Healthcare and Life Sciences
Table 84. Quantum Sensors in Defence and Military
Table 85. Quantum Sensors in Environmental Monitoring
Table 86. Quantum Sensors in Oil and Gas
Table 87. Quantum Sensors in Transportation
Table 88.Glossary of terms
Table 89. List of Abbreviations

LIST OF FIGURES
Figure 1. Quantum computing development timeline
Figure 2. Quantum Technology investments 2012-2025 (millions USD), total
Figure 3. National quantum initiatives and funding
Figure 4. Quantum Sensors: Market and Technology Roadmap to 2040
Figure 5. Quantum sensor industry market map
Figure 6. Global market for quantum sensors, by types, 2018-2046 (Millions USD)
Figure 7. Global market for quantum sensors, by volume, 2018-2046
Figure 8. Global market for quantum sensors, by sensor price, 2025-2046 (Units)
Figure 9. Global market for quantum sensors, by end use industry, 2018-2046 (Millions USD)
Figure 10. Atomic clocks roadmap
Figure 11. Quantum magnetometers roadmap
Figure 12. Quantum gravimeters roadmap
Figure 13. Inertial quantum sensors roadmap
Figure 14. Quantum RF sensors roadmap
Figure 15. Single photon detectors roadmap
Figure 16. Q.ANT quantum particle sensor
Figure 17. SWOT analysis for quantum sensors market
Figure 18. Roadmap for quantum sensing components and their applications
Figure 19. Atomic clocks market roadmap
Figure 20. Strontium lattice optical clock
Figure 21. NIST's compact optical clock
Figure 22. SWOT analysis for atomic clocks
Figure 23. Global market for atomic clocks 2025-2046 (Billions USD)
Figure 24. Global market for Bench/rack-scale atomic clocks, 2026-2046 (Millions USD)
Figure 25. Global market for Chip-scale atomic clocks, 2026-2046 (Millions USD)
Figure 26. Quantum Magnetometers Market Roadmap
Figure 27.Principle of SQUID magnetometer
Figure 28. SWOT analysis for SQUIDS
Figure 29. SWOT analysis for OPMs
Figure 30. Tunneling magnetoresistance mechanism and TMR ratio formats
Figure 31. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors
Figure 32. SWOT analysis for N-V Center Magnetic Field Sensors
Figure 33. Global market forecasts for quantum magnetic field sensors, by type, 2025-2046 (Millions USD)
Figure 34. Quantum Gravimeter
Figure 35. Quantum gravimeters Market roadmap
Figure 36. Global market for Quantum gravimeters 2025-2046 (Millions USD)
Figure 37. SWOT analysis for Quantum Gravimeters
Figure 38. Inertial Quantum Sensors Market roadmap
Figure 39. Global market for quantum gyroscopes and accelerometers 2026-2046 (millions USD)
Figure 40. SWOT analysis for Quantum Gyroscopes
Figure 41. SWOT analysis for Quantum image sensing
Figure 42. Global market for quantum image sensors 2025-2046 (Millions USD)
Figure 43. Principle of quantum radar
Figure 44. Illustration of a quantum radar prototype
Figure 45. Quantum RF Sensors Market Roadmap (2023-2046)
Figure 46. Global market for quantum RF sensors 2026-2046 (Millions USD)
Figure 47. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right)
Figure 48. PsiQuantum’s modularized quantum computing system networks
Figure 49. Quantum Brilliance device
Figure 50. SpinMagIC quantum sensor

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • Aegiq
  • Airbus
  • Aquark Technologies
  • Artilux
  • Atomionics
  • Beyond Blood Diagnostics
  • Bosch Quantum Sensing
  • BT
  • Cerca Magnetics
  • Chipiron
  • Chiral Nano AG
  • Covesion
  • Delta g
  • DeteQt
  • Diatope GmbH
  • Diffraqtion
  • Digistain
  • Element Six
  • Ephos
  • EuQlid
  • Exail Quantum Sensors
  • Genesis Quantum Technology
  • ID Quantique
  • Infleqtion
  • Ligentec
  • M Squared Lasers
  • Mag4Health
  • Menlo Systems GmbH
  • Mesa Quantum
  • Miraex
  • Munich Quantum Instruments GmbH
  • NeoCrystech
  • Neuranics
  • NIQS Technology Ltd
  • Nomad Atomics
  • Nu Quantum
  • NVision
  • Phasor Innovation
  • Photon Force
  • Polariton Technologies
  • PsiQuantum
  • Q-CTRL
  • Q.ANT
  • Qaisec
  • Qingyuan Tianzhiheng Sensing Technology Co. Ltd
  • QLM Technology
  • Qnami
  • QSENSATO
  • QT Sense B.V.
  • Quan2D Technologies
  • QuantaMap
  • QuantCAD LLC
  • Quantum Brilliance
  • Quantum Catalyzer (Q-Cat)