The sustainable tire market is USD 0.12 billion in 2024 and is projected to reach USD 0.39 billion by 2029, at a CAGR of 27.3%. Tires are non-biodegradable and at the same time have a number of environmental problems lying in their improper management. This makes the adherence to EPR very crucial. EPR is basically a framework policy advancing the notion that the producer is responsible for the product 'from cradle to grave', related to proper waste management and disposal. It encourages and promotes green practices with reduced burden on the waste management departments of local governments. Moreover, the ambition of global carbon neutrality will further inspire the movement of green tire materials.
The 2015 Paris Agreement has the objective of keeping the increase in global average temperature well below 2°C, while trying to limit it to net-zero emissions. Here, the European Union has set an objective to be climate-neutral by 2050 and was for the first time, as cited in the European Climate Law. Net zero emissions no later than 2070 was pledged in India.
Not later than in 2050, the United States committed to net-zero emissions from its operations through the newly launched Net-Zero Government Initiative at COP26. Other drivers include the corporate sustenance initiatives that push for the use of sustenance tire materials, whereby several companies set very aggressive goals in the general strategies intended to reduce their footprints. For example, the ambition set by Apollo Tires is carbon neutrality by 2050, with interim targets in place; LPWA intends to ensure a reduction in emission intensity by 25% through Scope 1 and Scope 2 by 2026 against the 2020 baseline.
Goodyear Tire & Rubber Company targets to deliver 100% sustainable materials and maintenance-free tires by 2030, thus making a commitment to drive a sea change in manufacturing and sustainability processes related to tire manufacturing. CEAT is also working towards halving its environmental footprint by 30% come 2030, majorly focusing on sustainable production practices and reducing carbon footprint. These, therefore, are the great drivers in demand for innovation toward environmentally friendly solutions in the sustainable tire market. Advanced tire materials are now being developed to help companies realize their targets of becoming carbon-neutral and improve their environmental performance, thus underscoring growth in the sustainable tire market.
It thus earmarks silica as one of the key materials in the achievement of both strict regulatory requirements and consumer demand for green products. Silica started gaining dominance because of the wide reach of HDS technology in the marketplace. HDS technology, with finer dispersion within the rubber matrix, lends improved tire performance in terms of grip, durability, and overall efficiency. This is where the many tire property improvements in relation to wet traction and wear resistance - without performance trade-offs - make silica quite indispensable in the goal of tire manufacturers striving to come up with high-performance, sustainable tires.
EVs will need lower rolling resistance tires to achieve the best battery performance but be more resistant and have better handling than ICE vehicle tires because of the higher torque and weight of an EV compared to traditional ICE vehicle applications. This is leading to increasing development of tire materials such as advanced silica and sustainable carbon black, critical to meet performance requirement demands. As the EV market grows, so will the value contribution associated with the sustainable tire tailored for such electric vehicles, placing EVs second in value contribution within the propulsion type segment of the sustainable tire market.
As consumers emerge wanting to align value concerns on the environment with vehicles, this segment is bound to experience heightened demand for materials that make sustainable tires. Besides, there are manufacturers who have been forced by regulatory pressure as well as government incentives towards green technologies to inculcate sustainability into their processes hence making tire materials more valuable in the passenger car market that are sustainable. Already a trendsetter when it comes to electric and hybrid pass automobile segments where other than standard compounds are required making it certainly possible for these figures to sharply rise.
Such sustainable tire as low rolling resistance rubber compounds or eco-friendly silica attract indeed a wide range of customers who wish to reduce their fuel use and carbon emissions. Moreover, its variance in this segment by different types of cars that are needing different types of tires marks a significant route for sustainable tire. The manufacturers make a range of the green tire for fulfilling the new market demand for the aftermarket. Development in this region for sustainable tire comes out of a compliance approach that emphasizes enhancing the longevity of the tire lifecycle, vehicle performance, and emission regulation; therefore, it is becoming a critical aftermarket segment.
In addition, North America comprises major tire manufacturers and automobile companies investing a huge amount in research and development to attain sustainability goals, such as minimizing not only environmental impacts of products but also innovating for better tire performance, durability, and safety with sustainable materials like silica, bio-based rubber, and recycled carbon black. The well-established infrastructure of the region in terms of automotive production, coupled with high consumer awareness and demand for eco-friendly products, further strengthens this market. In view of tightening regulations and growing consumer preference for 'green' products, the contribution or role of North America in the global sustainable tire market can hardly be low.
In the process of determining and verifying the market size for several segments and subsegments identified through secondary research, extensive primary interviews were conducted. A breakdown of the profiles of the primary interviewees is as follows:
The 2015 Paris Agreement has the objective of keeping the increase in global average temperature well below 2°C, while trying to limit it to net-zero emissions. Here, the European Union has set an objective to be climate-neutral by 2050 and was for the first time, as cited in the European Climate Law. Net zero emissions no later than 2070 was pledged in India.
Not later than in 2050, the United States committed to net-zero emissions from its operations through the newly launched Net-Zero Government Initiative at COP26. Other drivers include the corporate sustenance initiatives that push for the use of sustenance tire materials, whereby several companies set very aggressive goals in the general strategies intended to reduce their footprints. For example, the ambition set by Apollo Tires is carbon neutrality by 2050, with interim targets in place; LPWA intends to ensure a reduction in emission intensity by 25% through Scope 1 and Scope 2 by 2026 against the 2020 baseline.
Goodyear Tire & Rubber Company targets to deliver 100% sustainable materials and maintenance-free tires by 2030, thus making a commitment to drive a sea change in manufacturing and sustainability processes related to tire manufacturing. CEAT is also working towards halving its environmental footprint by 30% come 2030, majorly focusing on sustainable production practices and reducing carbon footprint. These, therefore, are the great drivers in demand for innovation toward environmentally friendly solutions in the sustainable tire market. Advanced tire materials are now being developed to help companies realize their targets of becoming carbon-neutral and improve their environmental performance, thus underscoring growth in the sustainable tire market.
Silica, by material type, accounts for the largest market share in terms of volume in 2023.
Silica is expected to retain the largest volume in the sustainable tire market because it helps improve tire performance and reduces environmental impact. Silica has been one of the essential components in the production of tires - more specifically, energy-efficient green tires - reducing rolling resistance drastically and hence fuel consumption, with resultant lower CO2 emissions.It thus earmarks silica as one of the key materials in the achievement of both strict regulatory requirements and consumer demand for green products. Silica started gaining dominance because of the wide reach of HDS technology in the marketplace. HDS technology, with finer dispersion within the rubber matrix, lends improved tire performance in terms of grip, durability, and overall efficiency. This is where the many tire property improvements in relation to wet traction and wear resistance - without performance trade-offs - make silica quite indispensable in the goal of tire manufacturers striving to come up with high-performance, sustainable tires.
This will undoubtedly increase the demand for silica in tire manufacturing, cementing its place as the largest material by volume in the sustainable tire market
Electric Vehicles is expected to be the second largest propulsion type for sustainable tire market during the forecast period, in terms of value.
EVs will represent the second-largest propulsion type by value in the sustainable tire market, as the world is accelerating toward electrification and EVs present special needs to tires. While governments and consumers raise their focus on sustainability and carbon reduction, so does the adoption rate of EVs demanding special tires that would work best with the peculiar characteristics of these vehicles.EVs will need lower rolling resistance tires to achieve the best battery performance but be more resistant and have better handling than ICE vehicle tires because of the higher torque and weight of an EV compared to traditional ICE vehicle applications. This is leading to increasing development of tire materials such as advanced silica and sustainable carbon black, critical to meet performance requirement demands. As the EV market grows, so will the value contribution associated with the sustainable tire tailored for such electric vehicles, placing EVs second in value contribution within the propulsion type segment of the sustainable tire market.
Passenger Vehicles is expected to be the second largest vehicle type for sustainable tire market during the forecast period, in terms of value.
With high volumes of passenger vehicles on the road and growing consumer demand for green products, it is expected that passenger vehicles will be the second-biggest type of vehicle by value in the sustainable tire market. The global automotive market continues to turn green, and passenger vehicle manufacturers and tire makers are increasingly focusing on including sustainable materials in their products. The demands for eco-friendly tires in passenger cars have also been on the rise among consumers. Normally, such tires are made with advanced material that reduces the rolling resistance and enhances fuel efficiency; therefore, they release less carbon.As consumers emerge wanting to align value concerns on the environment with vehicles, this segment is bound to experience heightened demand for materials that make sustainable tires. Besides, there are manufacturers who have been forced by regulatory pressure as well as government incentives towards green technologies to inculcate sustainability into their processes hence making tire materials more valuable in the passenger car market that are sustainable. Already a trendsetter when it comes to electric and hybrid pass automobile segments where other than standard compounds are required making it certainly possible for these figures to sharply rise.
Bias tires are expected to be the second largest structure for sustainable tire market during the forecast period, in terms of value.
The bias tires segment is projected to continue holding the second-largest value share of the sustainable tire market, due to its wide applications in some vehicle segments. Though radials dominate the market, bias tires have an extremely solid nature under harsh conditions - where there is a question of critical durability, puncture resistance, and loads. The situation is usable in the agricultural, construction, and some of the commercial cars sectors. Bias tires have a number of layers of fabric laid at an angle to one another to achieve a cross-ply structure, thus providing extraordinary sidewall strength for this tire to work under very coarse conditions with heavy loads. With sectors like agriculture and construction growing and leaning more towards green solutions, demands for green materials in bias tires grow too.Aftermarket are expected to be the second largest sales channel for sustainable tire market during the forecast period, in terms of value.
By sales channel, the aftermarket is likely to occupy the second-largest value share in the sustainable tire market. This may be attributed to the rise in demand for environmentally sustainable and high-performance replacement tires. The preference toward green tire options rises as consumers and businesses replace worn-out tires and develop a sense of responsibility toward their environment. One trend in these areas with strict environmental regulations is that the practiced sustainability is not because people there prefer it but sometimes even are required to. Contrarily, automotive owners have always looked out for pocket-friendly and durable tire solutions while wanting to be environmentally responsible in the aftermarket.Such sustainable tire as low rolling resistance rubber compounds or eco-friendly silica attract indeed a wide range of customers who wish to reduce their fuel use and carbon emissions. Moreover, its variance in this segment by different types of cars that are needing different types of tires marks a significant route for sustainable tire. The manufacturers make a range of the green tire for fulfilling the new market demand for the aftermarket. Development in this region for sustainable tire comes out of a compliance approach that emphasizes enhancing the longevity of the tire lifecycle, vehicle performance, and emission regulation; therefore, it is becoming a critical aftermarket segment.
Based on region, North America was the second largest market for sustainable adhesives in 2023.
North America is the second-largest region in the sustainable tire market, owing to a number of contributing factors. Robust growth in the automotive industry, coupled with rising environmental regulations, drives the demand for sustainable tire. In the U.S. and Canada, the mounting pressure from government departments on auto-manufacturers and tire manufacturers to cut down CO2 emissions and enhance fuel efficiency has compelled companies to switch to sustainable materials in tire manufacturing.In addition, North America comprises major tire manufacturers and automobile companies investing a huge amount in research and development to attain sustainability goals, such as minimizing not only environmental impacts of products but also innovating for better tire performance, durability, and safety with sustainable materials like silica, bio-based rubber, and recycled carbon black. The well-established infrastructure of the region in terms of automotive production, coupled with high consumer awareness and demand for eco-friendly products, further strengthens this market. In view of tightening regulations and growing consumer preference for 'green' products, the contribution or role of North America in the global sustainable tire market can hardly be low.
In the process of determining and verifying the market size for several segments and subsegments identified through secondary research, extensive primary interviews were conducted. A breakdown of the profiles of the primary interviewees is as follows:
- By Company Type: Tier 1 - 45%, Tier 2 - 35%, and Tier 3 - 20%
- By Designation: C-Level - 25%, Director Level - 15%, and Others - 60%
- By Region: North America - 25%, Europe - 35%, Asia Pacific - 30%, Middle East & Africa - 5%, and South America - 5%
Research Coverage
This report segments the market for the sustainable adhesives market on the basis of material type, vehicle type, propulsion type, structure, sales channel and region. It provides estimations for the overall value of the market across various regions. A detailed analysis of key industry players has been conducted to provide insights into their business overviews, products & services, key strategies, new product launches, expansions, and partnerhsips associated with the market for the sustainable tire market.Key benefits of buying this report
This research report is focused on various levels of analysis - industry analysis (industry trends), market ranking analysis of top players, and company profiles, which together provide an overall view of the competitive landscape, emerging and high-growth segments of the sustainable tire market; high-growth regions; and market drivers, restraints, opportunities, and challenges.The report provides insights on the following pointers:
- Analysis of key drivers: Stricter environmental regulations and carbon neutrality goals along with corporate sustainability goals.
- Market Penetration: Comprehensive information on the sustainable tire market offered by top players in the global sustainable tire market.
- Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product launches in the sustainable tire market.
- Market Development: Comprehensive information about lucrative emerging markets - the report analyzes the markets for the sustainable tire across regions.
- Market Diversification: Exhaustive information about new products, untapped regions, and recent developments in the global sustainable tire market.
- Competitive Assessment: In-depth assessment of market shares, strategies, products, and manufacturing capabilities of leading players in the sustainable tire market.
Table of Contents
1 Introduction
2 Research Methodology
4 Premium Insights
5 Market Overview
6 Sustainable Tire Materials Market, by Material Type
7 Sustainable Tire Materials Market, by Propulsion Type
8 Sustainable Tire Materials Market, by Vehicle Type
9 Sustainable Tire Materials Market, by Structure
10 Sustainable Tire Materials Market, by Sales Channel
11 Sustainable Tire Materials Market, by Region
12 Competitive Landscape
13 Company Profiles
14 Appendix
List of Tables
List of Figure
Companies Mentioned
- Evonik Industries AG
- Solvay
- Birla Carbon
- Orion
- Grp Ltd.
- Genan Holding A/S
- Lehigh Technologies, Inc.
- Cabot Corporation
- Ppg Industries, Inc.
- Jiangxi Black Cat Carbon Black Co. Ltd.
- Ldc Co. Ltd.
- Monolith Inc.
- Contec
- Black Bear Carbon B.V.
- Snr Reclamations Pvt. Ltd.
- Capital Carbon
- Pyrum Innovations AG
- Origin Materials
- Tinna Rubber & Infrastructure Ltd.
- Hi-Green Carbon Ltd.
- Sapphire Reclaim Rubber Pvt. Ltd.
- Envigas
- Tokai Carbon Cb Ltd.