+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Space Trajectories. Basic and Advanced Topics. Edition No. 1

  • Book

  • 464 Pages
  • October 2024
  • John Wiley and Sons Ltd
  • ID: 6012672
An authoritative reference that covers essential concepts of orbital mechanics and explains how they relate to advanced space trajectory applications

Space Trajectories is the first book to offer a comprehensive exploration of orbital mechanics and trajectory optimization in a single volume. Beginning with a review of essential concepts, the book progresses to advanced space applications, highlighting methods used in today’s space missions.

The contents are organized into three parts. The first part delves into free orbital motion, covering topics such as Keplerian motion, perturbed motion, the three-body problem, orbit determination, and collision risks in orbit. The second part focuses on controlled orbital motion, discussing impulsive transfer, orbital rendezvous, thrust level optimization, low-thrust transfer, and space debris cleaning. The third part examines ascent and reentry, including launch into orbit, launcher staging, analytical solutions in flat Earth, interplanetary missions, and atmospheric reentry.

Each chapter is written in a modular way, featuring conclusion summaries, key points, and suggestions for further investigation. Examples are included with detailed solutions methods that readers can apply to solve their own trajectory problems.

Written by an expert of the topic who has performed guidance of Ariane launchers for 30 years, Space Trajectories includes information on: - Keplerian motion, motion time law, universal formulation, equinoctial parameters, and Lagrange coefficients - Osculating orbit, Gauss equations, gravitational and third body perturbations, Lissajous and Halo orbits, and invariant manifolds - Astrometry measurements, Kalman filtering, orbit uncertainties, and collision probability - Transfer in one, two, or three impulses, minimum-energy transfer, Lambert’s problem, high- and low-thrust transfer, and interplanetary path - Launch and reentry trajectories, propulsion systems, optimized thrust profiles, and launcher staging

Space Trajectories is an essential reference for students and researchers aiming to quickly understand the main issues in astrodynamics and the way to design trajectories, as well as space engineers seeking to consolidate their knowledge in the field of optimization and optimal control applied to aerospace and space missions.

Table of Contents

About the Author xv

Foreword xvii

Acknowledgments xix

Introduction xxi

Part I Free Orbital Motion 1

1 Two-Body Problem 3

1.1 Introduction 3

1.2 Keplerian Motion 3

1.2.1 Dynamic Model 4

1.2.2 Prime Integrals 5

1.2.3 Orbit Shape 7

1.3 Motion Time Law 12

1.3.1 Elliptical Orbit 12

1.3.2 Hyperbolic Orbit 14

1.3.3 Parabolic Orbit 15

1.3.4 Lagrange Coefficients 16

1.3.5 Universal Variable 18

1.4 Orbital Parameters 23

1.4.1 Classical Orbital Parameters 23

1.4.2 Relation to Position and Velocity 23

1.4.3 Equinoctial Orbital Parameters 25

1.4.4 Earth Orbits 25

1.5 Conclusion 31

1.5.1 The Key Points 31

1.5.2 To Go Further 31

2 Perturbed Motion 33

2.1 Introduction 33

2.2 Unperturbed Motion 34

2.2.1 Keplerian Model 34

2.2.2 Orbital Parameters 34

2.2.3 Useful Frames 36

2.3 Perturbed Motion 36

2.3.1 Osculating Orbit 37

2.3.2 Derivation Formula 37

2.3.3 Gauss Equations 38

2.3.4 Lagrange Equations 41

2.3.5 Equinoctial Parameters 43

2.3.6 Integration Methods 44

2.4 Gravitational Perturbations 48

2.4.1 Gravitational Potential 49

2.4.2 Spherical Body 49

2.4.3 Nonspherical Body 51

2.4.4 First Zonal Term 54

2.5 Other Perturbations 58

2.5.1 Third-Body Attraction 58

2.5.2 Atmospheric Friction 64

2.5.3 Radiation Pressure 65

2.6 Conclusion 65

2.6.1 The Key Points 65

2.6.2 To Go Further 66

3 Three-Body Problem 67

3.1 Introduction 67

3.2 Circular-Restricted Three-Body Problem 68

3.2.1 Motion Equations 68

3.2.2 Accessible Region 69

3.2.3 Lagrange Points 71

3.3 Periodic Orbits 74

3.3.1 Linearized Solution 74

3.3.2 Periodic Solution 80

3.3.3 Halo Orbits 83

3.4 Transfers 86

3.4.1 Linearization in the Orbit Vicinity 86

3.4.2 Invariant Manifolds 88

3.4.3 Transfer Strategies 89

3.5 Conclusion 93

3.5.1 The Key Points 93

3.5.2 To Go Further 93

4 Orbit Determination 95

4.1 Introduction 95

4.2 Measurements 96

4.2.1 Observation System 96

4.2.2 Measurements 100

4.2.3 Directions of Stars 102

4.3 Preliminary Orbit Estimation 104

4.3.1 Position Measurements 104

4.3.2 Direction Measurements 107

4.4 Continuous Orbit Estimation 110

4.4.1 Least Squares 111

4.4.2 Differential Correction 113

4.4.3 Kalman Filtering 116

4.5 Conclusion 119

4.5.1 The Key Points 119

4.5.2 To Go Further 119

5 Collision Risks 121

5.1 Introduction 121

5.2 Orbit Uncertainties 122

5.2.1 Orbital Motion 122

5.2.2 Ellipsoid of Uncertainty 124

5.2.3 Gaussian Model 126

5.3 Conjunction 129

5.3.1 Numerical Simulation 129

5.3.2 Orbit-to-Orbit Distance 129

5.3.3 Trajectory-to-Orbit Distance 133

5.3.4 Combined Covariance 134

5.4 Risk of Collision 136

5.4.1 Short Conjunction 137

5.4.2 Probability of Collision 138

5.4.3 Analytical Formula 140

5.4.4 Maximum Probability 141

5.4.5 Long Conjunction 143

5.5 Conclusion 145

5.5.1 The Key Points 145

5.5.2 To Go Further 145

Part II Controlled Orbital Motion 147

6 Impulsive Transfer 149

6.1 Introduction 149

6.2 Orbit Target 150

6.2.1 Problem Formulation 150

6.2.2 Transfer in One Impulse 151

6.2.3 Transfer in Two or Three Impulses 155

6.3 Point Target 160

6.3.1 Problem Formulation 160

6.3.2 Minimum-Energy Transfer 161

6.3.3 Minimum-Eccentricity Transfer 162

6.3.4 Noncollinear Transfer 163

6.3.5 Collinear Transfer 168

6.4 Point and Time Target 171

6.4.1 Lambert’s Problem 171

6.4.2 Lambert’s Theorem 171

6.4.3 Transfer Time Equation 175

6.4.4 Universal Variable 181

6.4.5 Solution Methods 183

6.5 Conclusion 184

6.5.1 The Key Points 184

6.5.2 To Go Further 184

7 Orbital Rendezvous 187

7.1 Introduction 187

7.2 Phasing and Transfer 188

7.2.1 Orbital Model 188

7.2.2 Phasing 189

7.2.3 Transfer 190

7.2.4 Visibility 197

7.3 Target in Circular Orbit 198

7.3.1 Hill-Clohessy-Wiltshire Equations 198

7.3.2 Free Motion 200

7.3.3 Maneuvers 204

7.3.4 Approach Scenario 206

7.4 Control Laws 206

7.4.1 Optimum Control 206

7.4.2 Specific Controls 210

7.5 Conclusion 214

7.5.1 The Key Points 214

7.5.2 To Go Further 214

8 Optimal Thrust Level 215

8.1 Introduction 215

8.2 Problem Formulation 216

8.2.1 Optimal Control Problem 216

8.2.2 Conditions for Optimality 217

8.2.3 Property of the Velocity Costate 218

8.3 Analytical Solution 221

8.3.1 Direction of Thrust 221

8.3.2 Costate Vector 225

8.3.3 Injection Point and Direction 226

8.3.4 Reduced Problem 228

8.3.5 Performance Estimate 229

8.4 Application 230

8.4.1 Optimized Thrust Profile 230

8.4.2 Fixed Thrust Level 232

8.5 Conclusion 236

8.5.1 The Key Points 236

8.5.2 To Go Further 237

9 Low-Thrust Transfer 239

9.1 Introduction 239

9.2 Problem Formulation 240

9.2.1 Dynamics 240

9.2.2 Optimal Control Problem 242

9.2.3 Local Control Laws 245

9.2.4 Edelbaum’s Solution 249

9.3 Transfers to the Geostationary Orbit 251

9.3.1 Dynamic Model 251

9.3.2 Optimal Control Problem 253

9.3.3 Solution Method 255

9.3.4 Application Cases 258

9.4 Transfers Between Circular Orbits 262

9.4.1 Dynamic Model 262

9.4.2 Optimal Control Problem 263

9.4.3 Form of Optimal Trajectories 265

9.4.4 Solution Method 268

9.4.5 Application Case 270

9.5 Conclusion 273

9.5.1 The Key Points 273

9.5.2 To Go Further 273

9.5.3 Authorizations 274

10 Space Debris Cleaning 275

10.1 Introduction 275

10.2 Problem Formulation 276

10.2.1 Debris Orbits 276

10.2.2 Cleaning Program 277

10.2.3 Optimization Problem 279

10.3 Transfer Problem 280

10.3.1 Generic Transfer Strategy 280

10.3.2 High-Thrust Propulsion 281

10.3.3 Low-Thrust Propulsion 282

10.3.4 Reduced Formulation 284

10.4 Solution Method 285

10.4.1 Simulated Annealing 285

10.4.2 Cost Function 287

10.4.3 Solution Process 290

10.5 Application Case 290

10.5.1 High-Thrust Case 292

10.5.2 Low-Thrust Case 294

10.5.3 Comparison of High and Low-Thrust Solutions 296

10.6 Conclusion 297

10.6.1 The Key Points 297

10.6.2 To Go Further 297

10.6.3 Authorizations 297

Part III Launch and Reentry 299

11 Launch into Orbit 301

11.1 Introduction 301

11.2 Launcher Dynamics 302

11.2.1 Force Models 302

11.2.2 Motion Equations 304

11.3 Launcher Configuration 307

11.3.1 Propulsive ΔV 307

11.3.2 Staging 308

11.3.3 Preliminary Design 310

11.3.4 Versatility 311

11.4 Trajectory Optimization 312

11.4.1 Constraints 312

11.4.2 Risk Mitigation 315

11.4.3 Optimal Control Problem 316

11.4.4 Numerical Methods 318

11.4.5 Trajectory Segmentation 320

11.5 Guidance 322

11.5.1 Implicit Guidance 323

11.5.2 Explicit Guidance 324

11.5.3 Flight Control 326

11.6 Conclusion 327

11.6.1 The Key Points 327

11.6.2 To Go Further 327

12 Launcher Staging 329

12.1 Introduction 329

12.2 Staging Problem 330

12.2.1 Launcher Modeling 330

12.2.2 Trajectory Modeling 332

12.2.3 Global Problem 334

12.3 Impulsive Method 335

12.3.1 Propulsive Velocity Increment 335

12.3.2 Staging Problem 336

12.3.3 Staging Loops 337

12.4 Coupled Method 339

12.4.1 Control Law 339

12.4.2 Iterations and Margins 340

12.4.3 Versatile Configuration 341

12.4.4 Application Case 1: Number of Boosters 342

12.4.5 Application Case 2: Upper Stage Loading 345

12.5 Propellant Reserve 348

12.5.1 Performance and Reserve 348

12.5.2 Iterative Method 349

12.5.3 Embedded Method 350

12.5.4 Application Case 351

12.6 Conclusion 354

12.6.1 The Key Points 354

12.6.2 To Go Further 354

12.6.3 Authorizations 354

13 Flat Earth Solutions 355

13.1 Introduction 355

13.2 Ballistic Launch at Constant Acceleration 355

13.2.1 Modeling 356

13.2.2 Optimal Solution 357

13.2.3 Application Case 358

13.3 Injection into Orbit at Constant Acceleration 359

13.3.1 Modeling 359

13.3.2 Optimal Solution 359

13.3.3 Application Case 361

13.4 Vertical Launch at Variable Thrust 363

13.4.1 Modeling 363

13.4.2 Optimal Solution 364

13.4.3 Application Case 366

13.5 Injection into Orbit at Variable Thrust 367

13.5.1 Modeling 367

13.5.2 Optimal Solution 368

13.5.3 Switching Function 370

13.5.4 Numerical Solution 372

13.6 Transition to the Round Earth 374

13.6.1 Change of Coordinates 374

13.6.2 Continuation Method 376

13.6.3 Application Case 378

13.7 Conclusion 381

13.7.1 The Key Points 381

13.7.2 To Go Further 381

14 Interplanetary Trajectory 383

14.1 Introduction 383

14.2 Trajectory Modeling 384

14.2.1 Patched Conics 384

14.2.2 Sphere of Influence 385

14.2.3 Heliocentric Phase 387

14.2.4 Planetocentric Phase 390

14.3 Escape Conditions 392

14.3.1 Keplerian Motion 392

14.3.2 Hyperbolic Orbit 393

14.3.3 Escape Velocity 395

14.3.4 Fly-by Maneuver 397

14.4 Mission Scenario 399

14.4.1 Launch Strategy 399

14.4.2 Tisserand Criterion 401

14.4.3 Scenario Optimization 405

14.4.4 Correction Maneuvers 406

14.5 Conclusion 409

14.5.1 The Key Points 409

14.5.2 To Go Further 410

15 Atmospheric Reentry 411

15.1 Introduction 411

15.2 Motion Equations 411

15.2.1 Reentry Missions and Vehicles 411

15.2.2 Rotating Geocentric Frame 413

15.2.3 Spherical Coordinates 414

15.2.4 Forces Applied 416

15.2.5 Differential Equations of Motion 419

15.2.6 Trajectory Optimization 420

15.3 Orbital Phase 421

15.3.1 Deorbitation 422

15.3.2 Ballistic Range 424

15.3.3 Return Maneuver 425

15.4 Atmospheric Phase 427

15.4.1 Simplified Equations 427

15.4.2 Reentry Corridor 428

15.4.3 Flight Corridor 430

15.4.4 Accessible Area 432

15.4.5 Steep Reentry 435

15.5 Conclusion 436

15.5.1 The Key Points 436

15.5.2 To Go Further 436

Short Bibliography 437

Web links 438

Index 439

Authors

Max Cerf ArianeGroup, France.