Photofunctional Nanomaterials for Biomedical Applications presents the latest research and developments surrounding photofunctional nanomaterials, including rare earth luminescence nanomaterials and photothermal agents, for biomedical applications related to imaging, biosensing, controlled drug delivery and release, and tumor diagnosis and therapy, as well as other applications such as bacteria engineering, optical information storage, acoustic sensing, and temperature detection. The book elucidates the underlying functioning mechanisms of these nanomaterials in depth and extensively discusses their current challenges and future development prospects.
Written by two highly qualified professors with significant research experience in the field, Photofunctional Nanomaterials for Biomedical Applications discusses sample topics including: - Fabrication of composites based on lanthanide-doped up conversion nanomaterials and metal-organic frameworks - Photosensitizers for photodynamic therapy (PDT), covering basic principles of PDT, classifications of various photosensitizers, mechanisms during treatment, and x-ray-activated PDT - Nanomaterials-induced pyroptosis and immunotherapy including pyroptosis pathways and their potential in immunotherapy, especially in activating effector T cells and promoting dendritic cell maturation - Design of ternary quantum dots, antibacterial mechanisms in photofunctional antibacterial nanomaterials, and inorganic nanomaterials in photothermal therapy
Establishing a robust groundwork for the future clinical translation, Photofunctional Nanomaterials for Biomedical Applications is an essential up-to-date reference on the subject for materials scientists, photochemists, biochemists, and electronic engineers.
Table of Contents
Foreword xv
Preface xvii
Acknowledgments xix
1 General Introduction and Background of Photofunctional Nanomaterials in Biomedical Applications 1
Chunxia Li and Jun Lin
1.1 Introduction to Nanomaterials 1
1.1.1 Surface and Interfacial Effects 1
1.1.2 Small Size Effect 2
1.1.3 Quantum Size Effect 2
1.1.4 Macroscopic Quantum Tunneling Effects 2
1.2 Introduction and Classification of Photofunctional Nanomaterials 3
1.2.1 Capture of Photons 3
1.2.2 Absorption and Conversion of Photons 4
1.2.3 Physical-chemical Processes at the Surface Interface 5
1.3 Introduction to Nanobiomedicine 6
1.3.1 Nano-drug Delivery Systems 6
1.3.2 Nano-imaging Technology 6
1.3.3 Nano-diagnostic Technologies 6
1.3.4 Nanotherapeutic Technology 8
1.3.5 Nano-biosensors 8
1.3.6 Tissue Engineering 8
1.4 Classification of Photofunctional Nanomaterials 9
1.4.1 Fluorescent Nanomaterials 9
1.4.1.1 Quantum Dots 10
1.4.1.2 Silicon-Based Fluorescent Nanomaterials 12
1.4.1.3 Rare Earth Luminescent Nanomaterials 13
1.4.1.4 Organic Fluorescent Nanomaterials 18
1.4.2 Photothermal Nanomaterials 20
1.4.2.1 Metallic Photothermal Nanomaterials 20
1.4.2.2 Semiconductor Photothermal Nanomaterials 22
1.4.2.3 Organic Photothermal Nanomaterials 22
1.4.2.4 Carbon-Based Photothermal Nanomaterials 24
1.4.2.5 Certain Two-Dimensional (2D) Nanomaterials 26
1.4.2.6 Biomass Photothermal Nanomaterials 27
1.4.3 Photodynamic Nanomaterials 29
1.4.3.1 Photosensitizer-Loaded Nanomaterials 29
1.4.3.2 Nanomaterials with Intrinsic Photodynamic Effects 32
1.4.3.3 Energy Conversion Nanomaterials for Photosensitizers 33
1.4.4 Photoelectrochemical Nanomaterials 38
1.4.4.1 Photocurrent Signal Generation Mechanism 39
1.4.4.2 Core Elements of Photoelectrochemical Biosensors 40
1.4.4.3 Types of Photoelectrochemical Biosensors 41
1.4.5 Photoacoustic Nanomaterials 45
1.4.5.1 Introduction to Photoacoustic Imaging 46
1.4.5.2 Selection of Photoacoustic Contrast Agents 46
1.5 Conclusion 55
References 55
2 Mechanism in Rare-Earth-Doped Luminescence Nanomaterials 77
Yulei Chang
2.1 Introduction 77
2.2 Composition of RE-Doped Luminescence Nanomaterials: Substrate (Host), Activator, and Sensitizer 77
2.3 Mechanism of RE-Doped Luminescence Nanomaterials 79
2.3.1 Luminescence: Downshifting, Upconversion, and Downconversion 79
2.3.1.1 Downshifting Luminescence 79
2.3.1.2 Upconversion Luminescence (UCL) 81
2.3.1.3 Downconversion/Quantum Cutting (QC) 83
2.3.2 Nonradiative Transition: Energy Transfer and Migration 83
2.3.2.1 Energy Transfer (ET) 83
2.3.2.2 Energy Migration (EM) 84
2.4 Luminescence Modulation 85
2.4.1 Crystal Field (CF) Regulation 85
2.4.2 Surface Defects Passivation 87
2.4.3 ET Regulation 89
2.4.3.1 Multicolor Tuning (MCT) of UCL 89
2.4.3.2 Energy Transfer-Triggered Novel Upconversion Excitation 90
2.4.4 Cross-Relaxation (CR) Regulation 90
2.4.4.1 Alleviating Concentration Quenching (CQ) for Highly Doped UCNPs 91
2.4.4.2 NIR Downshifting Modulation by CR 92
2.4.5 Phonon-Assisted Energy Transfer (PAET) 93
2.4.6 Dye Sensitization 95
2.4.6.1 Dye-Sensitized Core Nanoparticles 95
2.4.6.2 Dye-Sensitized Core-Shell Nanoparticles 96
2.4.7 Combined Excitation Regulation 97
2.4.7.1 Esa 97
2.4.7.2 Sted 98
2.4.8 External Field Modulation 98
2.4.8.1 Magnetic Field Modulation 98
2.4.8.2 Electric Field Modulation 100
2.4.8.3 Plasma Resonance Enhancement 104
References 105
3 Upconversion and NIR-II Luminescence Modulation of Rare-Earth Composites Using Material Informatics 117
Wenjing li and Ruichan lv
3.1 Introduction 117
3.2 Typical Processes of Upconversion Luminescence 118
3.2.1 Excited State Absorption 118
3.2.2 Photon Avalanche 119
3.2.3 Energy Transfer 119
3.2.4 Cross-Relaxation 120
3.2.5 Cooperative Upconversion 120
3.2.6 Second Harmonic Generation 121
3.3 Synthesis Methods of Upconversion Nanoparticles 121
3.3.1 Thermal Decomposition Methods 121
3.3.2 Hydrothermal/Solvothermal Method 122
3.3.3 Co-precipitation Method 123
3.3.4 Sol-Gel Method 123
3.3.5 Other Methods 124
3.4 Material Informatics in UCL 126
3.4.1 Genetic Algorithm 126
3.4.2 Particle Swarm Optimization 127
3.4.3 Simulated Annealing 127
3.4.4 Other Methods 128
3.5 Cancer Therapy Based on UCNPs 130
3.5.1 Photodynamic Therapy 131
3.5.2 Photothermal Therapy 131
3.5.3 Photo-Immunotherapy 133
3.5.4 Photo-Gene Therapy 135
3.6 Conclusion and Perspective 136
References 137
4 Composites Based on Lanthanide-Doped Upconversion Nanomaterials and Metal-Organic Frameworks: Fabrication and Bioapplications 147
Ze Yuan and Xiaoji Xie
4.1 Introduction 147
4.2 Fabrications of Composites 148
4.2.1 In Situ Encapsulation 148
4.2.2 Partial Embedment 155
4.2.3 Interfacial Attachment 157
4.3 Bioapplications 159
4.3.1 Therapy 159
4.3.2 Bioimaging 169
4.3.3 Biosensing 170
4.4 Conclusion and Perspectives 172
References 173
5 Lanthanide-Doped Nanomaterials for Luminescence Biosensing and Biodetection 181
Zhijie Ju, Peng Zhao, and Renren Deng
5.1 Introduction 181
5.2 Basics of Optical Bioprobe and Lanthanide-Doped Nanoparticles 181
5.2.1 Design Considerations for Bioprobe Development 181
5.2.2 Characteristics of Lanthanide-Doped Nanoparticles 182
5.2.3 NIR Biological Windows 186
5.2.4 Energy Transfer: A Key Factor in Biodetection 187
5.3 Synthesis and Functionalization of Lanthanide-Dope Nanocrystals 189
5.3.1 Design and Synthesis of Core-Shell Structured Nanocrystals 189
5.3.1.1 Design of Upconversion Nanoparticles (UCNPs) 190
5.3.1.2 Design of Downshifting Nanoparticles (DSNPs) 191
5.3.2 Functionalization of Lanthanide-Doped Nanoparticles (LnNPs) 192
5.3.2.1 Amphiphilic Polymer Absorption 192
5.3.2.2 Ligand Removal 192
5.3.2.3 Ligand Exchange 192
5.3.2.4 Surface Silanization 193
5.4 Applications of Luminescence Biosensing and Biodetection 193
5.4.1 Temperature Sensing 193
5.4.2 pH Sensing 196
5.4.3 Detection of Biomolecules 198
5.4.4 Detection of Small Molecules and Ions 202
5.5 Integrated Devices for Point-of-Care Testing 208
5.6 Summary 211
References 212
6 Rare Earth Luminescent Nanomaterials for Gene Delivery 219
Jiajun Li and Tao Zhang
6.1 Introduction 219
6.2 UCNPs Nanovectors 221
6.3 Surface Modification 221
6.3.1 Silica 221
6.3.2 Cationic Polymers 223
6.4 Increasing Endosomal Escape 224
6.5 Controlling Delivery Strategy 225
6.5.1 Photodegradable Polymers 226
6.5.2 Changes in Carrier Surface Charge 226
6.5.3 Photoisomerization 228
6.5.4 Microenvironments Stimulation 228
6.5.4.1 Reactive Oxygen Species (ROS) 228
6.5.4.2 Matrixmetallo Proteinases (MMPs) 229
6.5.5 Light Cage 230
6.5.6 Orthogonal Control 231
6.5.7 Release Monitoring 233
6.6 Gene Therapy and Syndication 234
6.6.1 Phototherapy 234
6.6.2 Chemotherapy 235
6.7 Other Lanthanide-Based Nanovectors 236
6.8 Perspective 238
References 239
7 Biosafety of Rare-Earth-Doped Nanomaterials 247
Yang Li and Guanying Chen
7.1 Internalization of UCNPs into Cells 247
7.2 Distribution of UCNPs 249
7.3 Excretion Behavior of UCNPs 252
7.4 The Toxic Effect of Cell Incubated with UCNPs 253
7.5 Toxic Effect of UCNPs In Vivo 256
7.6 Conclusions and Prospects 258
References 259
8 Design and Construction of Photosensitizers for Photodynamic Therapy of Tumor 269
Ruohao Zhang, Jing Feng, Yifei Zhou, Jitong Gong, and Hongjie Zhang
8.1 Introduction 269
8.2 Small Molecule Photosensitizers 273
8.2.1 Porphyrins 273
8.2.2 Phthalocyanines 275
8.2.3 BODIPYs 277
8.2.4 Indocyanine Dyes 278
8.2.5 AIEgens 278
8.3 Metal Complexes 279
8.3.1 Ru(II) Complexes 279
8.3.2 Ir(III) Complexes 280
8.3.3 MOFs 282
8.3.4 COFs 282
8.3.5 HOFs 284
8.4 Inorganic Photosensitizers 284
8.4.1 Carbon-Based Photosensitizers 284
8.4.2 Silicon-Based Photosensitizers 285
8.4.3 Simple Substance Photosensitizers 286
8.4.4 Metal Oxides-Based Photosensitizers 288
8.4.5 Lanthanide Upconversion Nanoparticles-Based PSs 290
8.5 Conclusions and Perspectives 292
References 293
9 Persistent Luminescent Materials for Optical Information Storage Applications 305
Cunjian Lin, Yixi Zhuang, and Rong-Jun Xie
9.1 Introduction 305
9.2 Luminescent Mechanism of Persistent Luminescent Materials with Deep Traps 307
9.3 Persistent Luminescent Materials with Deep Traps 308
9.3.1 Halides or Oxyhalides 309
9.3.2 Sulfides 318
9.3.3 Oxides 320
9.3.3.1 Monobasic Cation Oxide 320
9.3.3.2 Silicate/Germanate/Stannate 321
9.3.3.3 Aluminate/Gallate 323
9.3.3.4 Titanate/Zirconate 326
9.3.3.5 Oxide Glass 327
9.3.4 Nitride or Oxynitrides 327
9.4 Outlooks 331
References 332
10 The Application of Ternary Quantum Dots in Tumor-Related Marker Detection, Imaging, and Therapy 343
Ling Yang, Xiaojiao Kang, Jun Lin, and Ziyong Cheng
10.1 Introduction 343
10.1.1 Fundamental Properties of QDs 344
10.1.2 Synthesis Methods of QDs 346
10.1.2.1 Metal-Organic Synthesis Method 346
10.1.2.2 Hydrophilic Synthesis Method 347
10.1.2.3 Biosynthesis Method 348
10.1.3 Synthesis Methods of Ternary QDs 349
10.1.3.1 Hot-Injection Method 349
10.1.3.2 Ion Exchange Method 350
10.1.3.3 Hydrothermal Method 350
10.1.4 Performance Control of QDs 351
10.1.4.1 Core-Shell Structure 351
10.1.4.2 Alloying 352
10.1.4.3 Ioning 352
10.1.5 Modification of QDs 352
10.1.5.1 Surfacing Ligand Molecular Exchange 352
10.1.5.2 Amphiphilic Organic Macromolecular Coating 353
10.1.6 Characterization of QDs 353
10.1.7 Biomedical Applications of QDs 353
10.1.7.1 Biological Detection 354
10.1.7.2 Cell Imaging 355
10.1.7.3 Live Imaging 356
10.1.7.4 Tumor Therapy 357
10.2 Conclusion 362
References 363
11 Nanomaterials-Induced Pyroptosis and Immunotherapy 373
Hao Chen, Binbin Ding, Jun Lin, and Ping’an Ma
11.1 Discovery and Definition of Pyroptosis 373
11.2 Mechanisms of Pyroptosis 373
11.2.1 Inflammasome and Pyroptosis 374
11.2.2 Caspases, Gasdermins, and Pyroptosis 374
11.3 Pyroptosis and Tumor Immunotherapy 376
11.3.1 Ions Interference Therapy 379
11.3.2 TME-Responsive Pyroptosis Therapy 386
11.3.3 Demethylation-Activated Pyroptosis 386
11.3.4 The Other Pyroptosis Therapies 389
11.4 Summary and Outlook 392
References 393
12 NIR Light-Activated Conversion Nanomaterials for Photothermal/Immunotherapy 399
Yaru Zhang and Zhiyao Hou
12.1 Introduction 399
12.2 The Photothermal Conversion Mechanism 400
12.3 Classification of Inorganic Photothermal Materials 402
12.3.1 Noble Metal Nanomaterials 402
12.3.2 Semiconductor Nanomaterials 406
12.3.2.1 Transition Metal Oxides 406
12.3.2.2 Transition Metal Chalcogenides 408
12.3.3 Carbon-Based Materials 410
12.3.4 Other Types of PTAs 413
12.4 Mechanisms of PTT and Immunotherapy 413
12.4.1 Mechanism of PTT 413
12.4.2 Response of Tumor Cells to Heat Stress 414
12.4.3 PTT-Induced Necrosis and Apoptosis 414
12.4.4 PTT-Induced Immunogenic Cell Death 415
12.4.5 The Impact of PTT on Tumor Microenvironment 416
12.5 Nanomaterial-Based Photothermal/Immunotherapy 417
12.5.1 PTT-Synergized ICB Therapy 417
12.5.1.1 CTLA-4 Checkpoint 418
12.5.1.2 PD-1/PD-L1 Checkpoint 420
12.5.1.3 Other Immune Checkpoints 423
12.5.2 PTT-Synergized Immunoadjuvant Therapy 425
12.5.3 PTT-Synergized Adoptive Cellular Immunotherapy 427
12.5.4 PTT-Synergized Therapeutic Cancer Vaccine 429
12.6 Summary and Outlook 431
References 433
13 Near-Infrared Region-Responsive Antimicrobial Nanomaterials for the Treatment of Multidrug-Resistant Bacteria 449
Manlin Qi, Shangyan Shan, Biao Dong, and Lin Wang
13.1 Introduction 449
13.2 The Antibacterial Mechanisms of Photofunctional Antibacterial Nanomaterials 451
13.3 Photofunctional Nanomaterials and Antibacterial Activity Against MDR Bacteria 452
13.3.1 Representative NIR PDT Photosensitizers 453
13.3.1.1 NIR-Responsive Porphyrins 453
13.3.1.2 NIR-Responsive Phthalocyanines 455
13.3.2 NIR-Responsive PTT Agents 455
13.3.2.1 Gold Nanoparticles and Derived Nanostructures 455
13.3.2.2 Carbon Nanotubes 457
13.3.2.3 Graphene Oxide 458
13.3.2.4 Semiconductor Nanoparticles 458
13.3.3 NIR-Responsive PDT/PTT Agents 459
13.3.3.1 NIR Cyanine Dyes 459
13.3.3.2 NIR QDs 461
13.3.3.3 Aggregation-Induced Emission Luminogens 464
13.4 Limitations and Challenges 465
13.4.1 Common PDT or PTT Resistance Mechanism 465
13.4.1.1 Oxidative Stress Defense 465
13.4.1.2 Thermal Stress Defense 467
13.4.2 MDR Bacteria Drug Resistance Mechanism 467
13.5 Conclusions 468
References 469
14 Photoelectrochemical Nanomaterials for Biosensing Applications 477
Qianqian Sun and Piaoping Yang
14.1 Introduction 477
14.2 Classification of Photoelectrochemical Materials 477
14.2.1 Inorganic Photoelectrochemical Materials 479
14.2.2 Organic Photoelectrochemical Materials 480
14.2.3 Composite Photoelectrochemical Materials 480
14.3 Introduction to Biorecognition Elements 481
14.4 Factors Affecting the Photocurrent Signal 482
14.5 Signal Amplification and Bursting Strategies 484
14.5.1 Photocurrent Signal Amplification Strategies 484
14.5.2 Photocurrent Signal Bursting Strategies 489
14.6 Applications of Photoelectrochemical Biosensors 493
14.6.1 Direct Photoelectrochemical Detection 493
14.6.2 Photoelectrochemical Enzyme Detection 494
14.6.3 Photoelectrochemical Nucleic Acid Detection 495
14.6.4 Photoelectrochemical Immunoassay 497
14.7 Challenges and Potential Clinical Applications 498
References 500
15 X-Ray-Induced Photodynamic Therapy for Deep-Seated Tumors 507
Jinliang Liu
15.1 Introduction 507
15.2 Mechanisms of Interaction Between X-Rays and Scintillation Materials 509
15.3 X-Ray-Sensitive Materials 511
15.3.1 Metallic Materials 511
15.3.1.1 Lanthanide-based Nanophosphors 511
15.3.1.2 Metal Cluster Nanomaterials 514
15.3.1.3 Long-Afterglow Luminescent Nanomaterials 516
15.3.1.4 Quantum Dots 518
15.3.1.5 Metal-Organic Complexes 521
15.3.1.6 Metal-Organic Frameworks (MOFs) 523
15.3.2 Nonmetallic Materials 525
15.3.2.1 Organic Materials 525
15.3.2.2 Nonmetallic Inorganic Materials 526
15.4 X-Ray-Activated Therapy 527
15.4.1 Type I X-Ray-Excited PDT 527
15.4.2 Type II X-Ray-Excited PDT 529
15.4.3 Combined Type I and Type II X-Ray-Excited PDT 531
15.4.4 X-Ray-Induced Generation of RNS for Dynamic Therapy 532
15.4.5 Synergistic Therapy 536
15.5 Conclusions and Perspectives 539
References 540
16 Conclusions and Perspectives 549
Chunxia Li and Jun Lin
Index 551