+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Photofunctional Nanomaterials for Biomedical Applications. Edition No. 1

  • Book

  • 592 Pages
  • February 2025
  • John Wiley and Sons Ltd
  • ID: 6012675
Summary of the controlled synthesis of photofunctional nanoparticles and their hybrid nanocomposites, as well as their potential in biomedical applications

Photofunctional Nanomaterials for Biomedical Applications presents the latest research and developments surrounding photofunctional nanomaterials, including rare earth luminescence nanomaterials and photothermal agents, for biomedical applications related to imaging, biosensing, controlled drug delivery and release, and tumor diagnosis and therapy, as well as other applications such as bacteria engineering, optical information storage, acoustic sensing, and temperature detection. The book elucidates the underlying functioning mechanisms of these nanomaterials in depth and extensively discusses their current challenges and future development prospects.

Written by two highly qualified professors with significant research experience in the field, Photofunctional Nanomaterials for Biomedical Applications discusses sample topics including: - Fabrication of composites based on lanthanide-doped up conversion nanomaterials and metal-organic frameworks - Photosensitizers for photodynamic therapy (PDT), covering basic principles of PDT, classifications of various photosensitizers, mechanisms during treatment, and x-ray-activated PDT - Nanomaterials-induced pyroptosis and immunotherapy including pyroptosis pathways and their potential in immunotherapy, especially in activating effector T cells and promoting dendritic cell maturation - Design of ternary quantum dots, antibacterial mechanisms in photofunctional antibacterial nanomaterials, and inorganic nanomaterials in photothermal therapy

Establishing a robust groundwork for the future clinical translation, Photofunctional Nanomaterials for Biomedical Applications is an essential up-to-date reference on the subject for materials scientists, photochemists, biochemists, and electronic engineers.

Table of Contents

Foreword xv

Preface xvii

Acknowledgments xix

1 General Introduction and Background of Photofunctional Nanomaterials in Biomedical Applications 1
Chunxia Li and Jun Lin

1.1 Introduction to Nanomaterials 1

1.1.1 Surface and Interfacial Effects 1

1.1.2 Small Size Effect 2

1.1.3 Quantum Size Effect 2

1.1.4 Macroscopic Quantum Tunneling Effects 2

1.2 Introduction and Classification of Photofunctional Nanomaterials 3

1.2.1 Capture of Photons 3

1.2.2 Absorption and Conversion of Photons 4

1.2.3 Physical-chemical Processes at the Surface Interface 5

1.3 Introduction to Nanobiomedicine 6

1.3.1 Nano-drug Delivery Systems 6

1.3.2 Nano-imaging Technology 6

1.3.3 Nano-diagnostic Technologies 6

1.3.4 Nanotherapeutic Technology 8

1.3.5 Nano-biosensors 8

1.3.6 Tissue Engineering 8

1.4 Classification of Photofunctional Nanomaterials 9

1.4.1 Fluorescent Nanomaterials 9

1.4.1.1 Quantum Dots 10

1.4.1.2 Silicon-Based Fluorescent Nanomaterials 12

1.4.1.3 Rare Earth Luminescent Nanomaterials 13

1.4.1.4 Organic Fluorescent Nanomaterials 18

1.4.2 Photothermal Nanomaterials 20

1.4.2.1 Metallic Photothermal Nanomaterials 20

1.4.2.2 Semiconductor Photothermal Nanomaterials 22

1.4.2.3 Organic Photothermal Nanomaterials 22

1.4.2.4 Carbon-Based Photothermal Nanomaterials 24

1.4.2.5 Certain Two-Dimensional (2D) Nanomaterials 26

1.4.2.6 Biomass Photothermal Nanomaterials 27

1.4.3 Photodynamic Nanomaterials 29

1.4.3.1 Photosensitizer-Loaded Nanomaterials 29

1.4.3.2 Nanomaterials with Intrinsic Photodynamic Effects 32

1.4.3.3 Energy Conversion Nanomaterials for Photosensitizers 33

1.4.4 Photoelectrochemical Nanomaterials 38

1.4.4.1 Photocurrent Signal Generation Mechanism 39

1.4.4.2 Core Elements of Photoelectrochemical Biosensors 40

1.4.4.3 Types of Photoelectrochemical Biosensors 41

1.4.5 Photoacoustic Nanomaterials 45

1.4.5.1 Introduction to Photoacoustic Imaging 46

1.4.5.2 Selection of Photoacoustic Contrast Agents 46

1.5 Conclusion 55

References 55

2 Mechanism in Rare-Earth-Doped Luminescence Nanomaterials 77
Yulei Chang

2.1 Introduction 77

2.2 Composition of RE-Doped Luminescence Nanomaterials: Substrate (Host), Activator, and Sensitizer 77

2.3 Mechanism of RE-Doped Luminescence Nanomaterials 79

2.3.1 Luminescence: Downshifting, Upconversion, and Downconversion 79

2.3.1.1 Downshifting Luminescence 79

2.3.1.2 Upconversion Luminescence (UCL) 81

2.3.1.3 Downconversion/Quantum Cutting (QC) 83

2.3.2 Nonradiative Transition: Energy Transfer and Migration 83

2.3.2.1 Energy Transfer (ET) 83

2.3.2.2 Energy Migration (EM) 84

2.4 Luminescence Modulation 85

2.4.1 Crystal Field (CF) Regulation 85

2.4.2 Surface Defects Passivation 87

2.4.3 ET Regulation 89

2.4.3.1 Multicolor Tuning (MCT) of UCL 89

2.4.3.2 Energy Transfer-Triggered Novel Upconversion Excitation 90

2.4.4 Cross-Relaxation (CR) Regulation 90

2.4.4.1 Alleviating Concentration Quenching (CQ) for Highly Doped UCNPs 91

2.4.4.2 NIR Downshifting Modulation by CR 92

2.4.5 Phonon-Assisted Energy Transfer (PAET) 93

2.4.6 Dye Sensitization 95

2.4.6.1 Dye-Sensitized Core Nanoparticles 95

2.4.6.2 Dye-Sensitized Core-Shell Nanoparticles 96

2.4.7 Combined Excitation Regulation 97

2.4.7.1 Esa 97

2.4.7.2 Sted 98

2.4.8 External Field Modulation 98

2.4.8.1 Magnetic Field Modulation 98

2.4.8.2 Electric Field Modulation 100

2.4.8.3 Plasma Resonance Enhancement 104

References 105

3 Upconversion and NIR-II Luminescence Modulation of Rare-Earth Composites Using Material Informatics 117
Wenjing li and Ruichan lv

3.1 Introduction 117

3.2 Typical Processes of Upconversion Luminescence 118

3.2.1 Excited State Absorption 118

3.2.2 Photon Avalanche 119

3.2.3 Energy Transfer 119

3.2.4 Cross-Relaxation 120

3.2.5 Cooperative Upconversion 120

3.2.6 Second Harmonic Generation 121

3.3 Synthesis Methods of Upconversion Nanoparticles 121

3.3.1 Thermal Decomposition Methods 121

3.3.2 Hydrothermal/Solvothermal Method 122

3.3.3 Co-precipitation Method 123

3.3.4 Sol-Gel Method 123

3.3.5 Other Methods 124

3.4 Material Informatics in UCL 126

3.4.1 Genetic Algorithm 126

3.4.2 Particle Swarm Optimization 127

3.4.3 Simulated Annealing 127

3.4.4 Other Methods 128

3.5 Cancer Therapy Based on UCNPs 130

3.5.1 Photodynamic Therapy 131

3.5.2 Photothermal Therapy 131

3.5.3 Photo-Immunotherapy 133

3.5.4 Photo-Gene Therapy 135

3.6 Conclusion and Perspective 136

References 137

4 Composites Based on Lanthanide-Doped Upconversion Nanomaterials and Metal-Organic Frameworks: Fabrication and Bioapplications 147
Ze Yuan and Xiaoji Xie

4.1 Introduction 147

4.2 Fabrications of Composites 148

4.2.1 In Situ Encapsulation 148

4.2.2 Partial Embedment 155

4.2.3 Interfacial Attachment 157

4.3 Bioapplications 159

4.3.1 Therapy 159

4.3.2 Bioimaging 169

4.3.3 Biosensing 170

4.4 Conclusion and Perspectives 172

References 173

5 Lanthanide-Doped Nanomaterials for Luminescence Biosensing and Biodetection 181
Zhijie Ju, Peng Zhao, and Renren Deng

5.1 Introduction 181

5.2 Basics of Optical Bioprobe and Lanthanide-Doped Nanoparticles 181

5.2.1 Design Considerations for Bioprobe Development 181

5.2.2 Characteristics of Lanthanide-Doped Nanoparticles 182

5.2.3 NIR Biological Windows 186

5.2.4 Energy Transfer: A Key Factor in Biodetection 187

5.3 Synthesis and Functionalization of Lanthanide-Dope Nanocrystals 189

5.3.1 Design and Synthesis of Core-Shell Structured Nanocrystals 189

5.3.1.1 Design of Upconversion Nanoparticles (UCNPs) 190

5.3.1.2 Design of Downshifting Nanoparticles (DSNPs) 191

5.3.2 Functionalization of Lanthanide-Doped Nanoparticles (LnNPs) 192

5.3.2.1 Amphiphilic Polymer Absorption 192

5.3.2.2 Ligand Removal 192

5.3.2.3 Ligand Exchange 192

5.3.2.4 Surface Silanization 193

5.4 Applications of Luminescence Biosensing and Biodetection 193

5.4.1 Temperature Sensing 193

5.4.2 pH Sensing 196

5.4.3 Detection of Biomolecules 198

5.4.4 Detection of Small Molecules and Ions 202

5.5 Integrated Devices for Point-of-Care Testing 208

5.6 Summary 211

References 212

6 Rare Earth Luminescent Nanomaterials for Gene Delivery 219
Jiajun Li and Tao Zhang

6.1 Introduction 219

6.2 UCNPs Nanovectors 221

6.3 Surface Modification 221

6.3.1 Silica 221

6.3.2 Cationic Polymers 223

6.4 Increasing Endosomal Escape 224

6.5 Controlling Delivery Strategy 225

6.5.1 Photodegradable Polymers 226

6.5.2 Changes in Carrier Surface Charge 226

6.5.3 Photoisomerization 228

6.5.4 Microenvironments Stimulation 228

6.5.4.1 Reactive Oxygen Species (ROS) 228

6.5.4.2 Matrixmetallo Proteinases (MMPs) 229

6.5.5 Light Cage 230

6.5.6 Orthogonal Control 231

6.5.7 Release Monitoring 233

6.6 Gene Therapy and Syndication 234

6.6.1 Phototherapy 234

6.6.2 Chemotherapy 235

6.7 Other Lanthanide-Based Nanovectors 236

6.8 Perspective 238

References 239

7 Biosafety of Rare-Earth-Doped Nanomaterials 247
Yang Li and Guanying Chen

7.1 Internalization of UCNPs into Cells 247

7.2 Distribution of UCNPs 249

7.3 Excretion Behavior of UCNPs 252

7.4 The Toxic Effect of Cell Incubated with UCNPs 253

7.5 Toxic Effect of UCNPs In Vivo 256

7.6 Conclusions and Prospects 258

References 259

8 Design and Construction of Photosensitizers for Photodynamic Therapy of Tumor 269
Ruohao Zhang, Jing Feng, Yifei Zhou, Jitong Gong, and Hongjie Zhang

8.1 Introduction 269

8.2 Small Molecule Photosensitizers 273

8.2.1 Porphyrins 273

8.2.2 Phthalocyanines 275

8.2.3 BODIPYs 277

8.2.4 Indocyanine Dyes 278

8.2.5 AIEgens 278

8.3 Metal Complexes 279

8.3.1 Ru(II) Complexes 279

8.3.2 Ir(III) Complexes 280

8.3.3 MOFs 282

8.3.4 COFs 282

8.3.5 HOFs 284

8.4 Inorganic Photosensitizers 284

8.4.1 Carbon-Based Photosensitizers 284

8.4.2 Silicon-Based Photosensitizers 285

8.4.3 Simple Substance Photosensitizers 286

8.4.4 Metal Oxides-Based Photosensitizers 288

8.4.5 Lanthanide Upconversion Nanoparticles-Based PSs 290

8.5 Conclusions and Perspectives 292

References 293

9 Persistent Luminescent Materials for Optical Information Storage Applications 305
Cunjian Lin, Yixi Zhuang, and Rong-Jun Xie

9.1 Introduction 305

9.2 Luminescent Mechanism of Persistent Luminescent Materials with Deep Traps 307

9.3 Persistent Luminescent Materials with Deep Traps 308

9.3.1 Halides or Oxyhalides 309

9.3.2 Sulfides 318

9.3.3 Oxides 320

9.3.3.1 Monobasic Cation Oxide 320

9.3.3.2 Silicate/Germanate/Stannate 321

9.3.3.3 Aluminate/Gallate 323

9.3.3.4 Titanate/Zirconate 326

9.3.3.5 Oxide Glass 327

9.3.4 Nitride or Oxynitrides 327

9.4 Outlooks 331

References 332

10 The Application of Ternary Quantum Dots in Tumor-Related Marker Detection, Imaging, and Therapy 343
Ling Yang, Xiaojiao Kang, Jun Lin, and Ziyong Cheng

10.1 Introduction 343

10.1.1 Fundamental Properties of QDs 344

10.1.2 Synthesis Methods of QDs 346

10.1.2.1 Metal-Organic Synthesis Method 346

10.1.2.2 Hydrophilic Synthesis Method 347

10.1.2.3 Biosynthesis Method 348

10.1.3 Synthesis Methods of Ternary QDs 349

10.1.3.1 Hot-Injection Method 349

10.1.3.2 Ion Exchange Method 350

10.1.3.3 Hydrothermal Method 350

10.1.4 Performance Control of QDs 351

10.1.4.1 Core-Shell Structure 351

10.1.4.2 Alloying 352

10.1.4.3 Ioning 352

10.1.5 Modification of QDs 352

10.1.5.1 Surfacing Ligand Molecular Exchange 352

10.1.5.2 Amphiphilic Organic Macromolecular Coating 353

10.1.6 Characterization of QDs 353

10.1.7 Biomedical Applications of QDs 353

10.1.7.1 Biological Detection 354

10.1.7.2 Cell Imaging 355

10.1.7.3 Live Imaging 356

10.1.7.4 Tumor Therapy 357

10.2 Conclusion 362

References 363

11 Nanomaterials-Induced Pyroptosis and Immunotherapy 373
Hao Chen, Binbin Ding, Jun Lin, and Ping’an Ma

11.1 Discovery and Definition of Pyroptosis 373

11.2 Mechanisms of Pyroptosis 373

11.2.1 Inflammasome and Pyroptosis 374

11.2.2 Caspases, Gasdermins, and Pyroptosis 374

11.3 Pyroptosis and Tumor Immunotherapy 376

11.3.1 Ions Interference Therapy 379

11.3.2 TME-Responsive Pyroptosis Therapy 386

11.3.3 Demethylation-Activated Pyroptosis 386

11.3.4 The Other Pyroptosis Therapies 389

11.4 Summary and Outlook 392

References 393

12 NIR Light-Activated Conversion Nanomaterials for Photothermal/Immunotherapy 399
Yaru Zhang and Zhiyao Hou

12.1 Introduction 399

12.2 The Photothermal Conversion Mechanism 400

12.3 Classification of Inorganic Photothermal Materials 402

12.3.1 Noble Metal Nanomaterials 402

12.3.2 Semiconductor Nanomaterials 406

12.3.2.1 Transition Metal Oxides 406

12.3.2.2 Transition Metal Chalcogenides 408

12.3.3 Carbon-Based Materials 410

12.3.4 Other Types of PTAs 413

12.4 Mechanisms of PTT and Immunotherapy 413

12.4.1 Mechanism of PTT 413

12.4.2 Response of Tumor Cells to Heat Stress 414

12.4.3 PTT-Induced Necrosis and Apoptosis 414

12.4.4 PTT-Induced Immunogenic Cell Death 415

12.4.5 The Impact of PTT on Tumor Microenvironment 416

12.5 Nanomaterial-Based Photothermal/Immunotherapy 417

12.5.1 PTT-Synergized ICB Therapy 417

12.5.1.1 CTLA-4 Checkpoint 418

12.5.1.2 PD-1/PD-L1 Checkpoint 420

12.5.1.3 Other Immune Checkpoints 423

12.5.2 PTT-Synergized Immunoadjuvant Therapy 425

12.5.3 PTT-Synergized Adoptive Cellular Immunotherapy 427

12.5.4 PTT-Synergized Therapeutic Cancer Vaccine 429

12.6 Summary and Outlook 431

References 433

13 Near-Infrared Region-Responsive Antimicrobial Nanomaterials for the Treatment of Multidrug-Resistant Bacteria 449
Manlin Qi, Shangyan Shan, Biao Dong, and Lin Wang

13.1 Introduction 449

13.2 The Antibacterial Mechanisms of Photofunctional Antibacterial Nanomaterials 451

13.3 Photofunctional Nanomaterials and Antibacterial Activity Against MDR Bacteria 452

13.3.1 Representative NIR PDT Photosensitizers 453

13.3.1.1 NIR-Responsive Porphyrins 453

13.3.1.2 NIR-Responsive Phthalocyanines 455

13.3.2 NIR-Responsive PTT Agents 455

13.3.2.1 Gold Nanoparticles and Derived Nanostructures 455

13.3.2.2 Carbon Nanotubes 457

13.3.2.3 Graphene Oxide 458

13.3.2.4 Semiconductor Nanoparticles 458

13.3.3 NIR-Responsive PDT/PTT Agents 459

13.3.3.1 NIR Cyanine Dyes 459

13.3.3.2 NIR QDs 461

13.3.3.3 Aggregation-Induced Emission Luminogens 464

13.4 Limitations and Challenges 465

13.4.1 Common PDT or PTT Resistance Mechanism 465

13.4.1.1 Oxidative Stress Defense 465

13.4.1.2 Thermal Stress Defense 467

13.4.2 MDR Bacteria Drug Resistance Mechanism 467

13.5 Conclusions 468

References 469

14 Photoelectrochemical Nanomaterials for Biosensing Applications 477
Qianqian Sun and Piaoping Yang

14.1 Introduction 477

14.2 Classification of Photoelectrochemical Materials 477

14.2.1 Inorganic Photoelectrochemical Materials 479

14.2.2 Organic Photoelectrochemical Materials 480

14.2.3 Composite Photoelectrochemical Materials 480

14.3 Introduction to Biorecognition Elements 481

14.4 Factors Affecting the Photocurrent Signal 482

14.5 Signal Amplification and Bursting Strategies 484

14.5.1 Photocurrent Signal Amplification Strategies 484

14.5.2 Photocurrent Signal Bursting Strategies 489

14.6 Applications of Photoelectrochemical Biosensors 493

14.6.1 Direct Photoelectrochemical Detection 493

14.6.2 Photoelectrochemical Enzyme Detection 494

14.6.3 Photoelectrochemical Nucleic Acid Detection 495

14.6.4 Photoelectrochemical Immunoassay 497

14.7 Challenges and Potential Clinical Applications 498

References 500

15 X-Ray-Induced Photodynamic Therapy for Deep-Seated Tumors 507
Jinliang Liu

15.1 Introduction 507

15.2 Mechanisms of Interaction Between X-Rays and Scintillation Materials 509

15.3 X-Ray-Sensitive Materials 511

15.3.1 Metallic Materials 511

15.3.1.1 Lanthanide-based Nanophosphors 511

15.3.1.2 Metal Cluster Nanomaterials 514

15.3.1.3 Long-Afterglow Luminescent Nanomaterials 516

15.3.1.4 Quantum Dots 518

15.3.1.5 Metal-Organic Complexes 521

15.3.1.6 Metal-Organic Frameworks (MOFs) 523

15.3.2 Nonmetallic Materials 525

15.3.2.1 Organic Materials 525

15.3.2.2 Nonmetallic Inorganic Materials 526

15.4 X-Ray-Activated Therapy 527

15.4.1 Type I X-Ray-Excited PDT 527

15.4.2 Type II X-Ray-Excited PDT 529

15.4.3 Combined Type I and Type II X-Ray-Excited PDT 531

15.4.4 X-Ray-Induced Generation of RNS for Dynamic Therapy 532

15.4.5 Synergistic Therapy 536

15.5 Conclusions and Perspectives 539

References 540

16 Conclusions and Perspectives 549
Chunxia Li and Jun Lin

Index 551

Authors

Chunxia Li Shandong University. Jun Lin Chinese Academy of Sciences.