+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Charged Particle Beam Physics. An Introduction for Physicists and Engineers. Edition No. 1

  • Book

  • 272 Pages
  • June 2025
  • John Wiley and Sons Ltd
  • ID: 6025535
This scientifically up-to-date book lays the foundation for modeling, designing and implementing accelerator device components, using modern approaches such as the transfer-matrix method and numerical simulation using beam optics codes.

Table of Contents

1 BASIC PRINCIPLES OF PARTICLE ACCELERATORS
1.1 History of Accelerators
1.2 Units in Accelerator Physics
1.3 Common Components of Accelerators
1.4 Electrostatic Accelerators
1.5 Motion of a Charged Particle in a Magnetic Field
1.6 Cyclotron
1.7 Synchroton
1.8 Betatron
1.9 Colliders
1.10 Synchrocyclotrons
1.11 Storage Rings
1.12 FFAG Accelerators
1.13 Wakefield Accelerators
2 BEAM OPTICS
2.1 Phase Space
2.2 Liouville?s Theorem
2.3 Emittance and Brightness
2.4 Transfer Matrix
2.5 Transverse Beam Dynamics
2.6 Longitudinal Beam Dynamics
3 ION SOURCES
3.1 Plasma Physics
3.2 Negative Ion Source
3.3 ECR Ion Source
3.3 Microwave Ion Source
3.5 Laser Ion Source
3.6 Vacuum Arc Ion Source
3.7 High Current Gaseous Ion Source
4 MAGNETOSTATIC DEVICES
4.2 Solenoid Magnets
4.4 Dipole Magnets
4.4 Quadrupole Magnet
4.5 Sextupole Magnets
4.6 Scanner Magnets
4.7 Steerer Magnets
4.8 Wien Filter
4.9 Achromatic magnets
4.10 Undulators and Wigglers
5 ELECTROSTATIC DEVICES
5.1 Motion of a Charged Particle in an Electric Field
5.2 Electrostatic Gap Lens
5.3 Einzel Lens
5.4 Electrostatic Dipole
5.5 Electrostatic Quadrupole
5.6 Electrostatic Accelerating Tubes
6 RADIO FREQUENCY DEVICES
6.1 Motion of a Charged Particle in a Radio frequency field
6.2 RF Gap
6.3 RF Buncher
6.4 RF Chopper
6.4 Multiharmonic Buncher
6.5 RF Accelerating Cavities
6.6 Radiofrequency Quadrupoles
6.7 Drift Tube Linacs
7 BEAM DIAGNOSTIC DEVICES
7.1 Faraday Cups
7.2 Beam Profile Monitors
7.3 Transverse Emittance Scanner
7.4 Longitudinal Emittance Scanner
8 APPLICATIONS OF ACCELERATORS
8.1 Nuclear Physics
8.2 Materials Sciences
8.3 Atomic Physics
8.4 Plasma Physics
8.5 Radiation Biology
8.6 Accelerator Mass Spectroscopy
8.7 High Energy Elementary Particle Physics Appendices
Solutions to Chapter Problems

Authors

Sarvesh Kumar Manish K. Kashyap