+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Battery Systems for Electric Vehicles Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2021-2031

  • PDF Icon

    Report

  • 186 Pages
  • January 2026
  • Region: Global
  • TechSci Research
  • ID: 6033326
Free Webex Call
10% Free customization
Free Webex Call

Speak directly to the analyst to clarify any post sales queries you may have.

10% Free customization

This report comes with 10% free customization, enabling you to add data that meets your specific business needs.

The Global Battery Systems for Electric Vehicles Market is projected to expand from USD 38.90 Billion in 2025 to USD 80.82 Billion by 2031, reflecting a Compound Annual Growth Rate (CAGR) of 12.96%. These battery systems function as integrated energy storage units that include battery cells, thermal regulation mechanisms, and electronic management systems necessary for vehicle propulsion and safety. The market is primarily driven by strict global emissions standards and government-led financial incentives designed to phase out internal combustion engines. Additionally, the sustained decline in battery pack manufacturing costs and the critical need for extended vehicle driving ranges continue to bolster demand for these systems within the automotive sector.

Highlighting this demand, the International Energy Agency reported in 2024 that the requirement for electric vehicle batteries exceeded 750 gigawatt-hours in 2023, marking a 40 percent annual increase. Despite this growth, the market faces a significant obstacle regarding the security of the raw material supply chain, particularly the scarcity and price volatility of critical minerals such as lithium and cobalt. These supply-side constraints threaten to disrupt production schedules and delay the cost parity targets that are essential for broader market expansion.

Market Drivers

Declining battery manufacturing costs act as a fundamental driver for the market, facilitated by massive economies of scale and technological advancements in cathode chemistries. As gigafactories increase production capacity, manufacturers achieve substantial per-unit savings, which directly lowers the upfront price of electric vehicles. This cost trend is crucial for reaching price parity with internal combustion engines, thereby eliminating a major barrier to mass adoption. Furthermore, continuous improvements in cell energy density enable smaller, more efficient packs without compromising vehicle range, enhancing the value proposition for consumers. According to the U.S. Department of Energy's 'Fact of the Week 1326' released in January 2024, the estimated cost of an electric vehicle lithium-ion battery pack fell to $139 per kilowatt-hour in 2023, dynamics that stimulate broader market penetration by making electric mobility financially viable for middle-income demographics.

Simultaneously, surging global consumer demand for zero-emission mobility is forcing a rapid expansion in battery system procurement and development. This heightened interest is fueled by a growing array of attractive vehicle models and a societal shift toward sustainable transportation solutions. Automotive OEMs are responding by aggressively increasing their electrification targets and securing supply chains to satisfy this robust appetite for EVs. As noted by the International Energy Agency in the 'Global EV Outlook 2024' published in April 2024, global sales of electric cars neared 14 million in 2023, capturing 18% of the total market. Reflecting this growth in major regional hubs, the European Automobile Manufacturers’ Association reported in 2024 that new registrations of battery electric vehicles in the European Union reached 1.5 million units during the previous year, solidifying the region's position as a critical demand center.

Market Challenges

The instability surrounding the security of the raw material supply chain creates a formidable obstacle to the growth of the battery systems sector. Reliance on scarce minerals such as lithium and cobalt exposes manufacturers to price volatility, which complicates long-term financial planning and production scheduling. When input costs rise unexpectedly, it hinders the industry's ability to achieve the cost parity necessary to compete with internal combustion engines. Consequently, these supply-side constraints can delay the manufacturing of battery packs, directly reducing the volume of units available to meet automotive demand.

This vulnerability is further intensified by the high geographical concentration of these resources. Limited diversity in the supply base means that local interruptions can have global repercussions. According to the International Energy Agency in 2024, the top three producing countries accounted for over 70 percent of the global processing volume for key battery minerals. This centralization of the supply chain restricts the flexibility of battery producers to source materials elsewhere during shortages, thereby hampering the consistent delivery of energy storage systems required for market expansion.

Market Trends

The market is witnessing a decisive structural shift toward Lithium Iron Phosphate (LFP) chemistries, fundamentally altering a cathode landscape previously dominated by nickel-based alternatives. This transition is driven by the superior thermal stability and longevity of LFP cells, along with their freedom from expensive and volatile cobalt, which significantly mitigates supply chain risks. Advancements in cell packaging efficiency have enabled these iron-based systems to offer competitive ranges for standard-range vehicles, accelerating their uptake among major automotive original equipment manufacturers prioritizing margin improvement over raw performance. According to the International Energy Agency's 'Global EV Outlook 2024' released in April 2024, lithium iron phosphate chemistries accounted for nearly 40 percent of electric vehicle battery demand by capacity in 2023, marking a substantial increase that significantly outpaces other chemistries.

Concurrently, the industry is accelerating the commercialization of solid-state battery technology to overcome the energy density limitations of conventional liquid electrolyte systems. By replacing the liquid component with a solid electrolyte, manufacturers aim to improve safety profiles by eliminating flammability risks while simultaneously enabling higher voltages and faster charging capabilities. This technological evolution is transitioning from research and development into operational pre-production phases as established players set up pilot lines to validate manufacturing scalability. For instance, Samsung SDI confirmed in a March 2024 press release regarding 'InterBattery 2024' that the company has a roadmap to commence mass production of all-solid-state batteries with a targeted energy density of 900 watt-hours per liter by 2027.

Key Players Profiled in the Battery Systems for Electric Vehicles Market

  • A123 Systems LLC
  • Altairnano
  • TRU Group Inc.
  • Hitachi, Ltd.
  • Johnson Controls International PLC
  • LG Chem, Ltd.
  • NEC Corporation
  • Panasonic Corporation
  • Toshiba Corporation
  • Samsung SDI Co Ltd.

Report Scope

In this report, the Global Battery Systems for Electric Vehicles Market has been segmented into the following categories:

Battery Systems for Electric Vehicles Market, by Battery Type:

  • Lithium-Ion
  • Nickel-Metal Hydride Batteries
  • Lead-Acid Batteries
  • Other Types

Battery Systems for Electric Vehicles Market, by Vehicle Type:

  • Passenger Cars
  • Commercial Vehicle

Battery Systems for Electric Vehicles Market, by Region:

  • North America
  • Europe
  • Asia-Pacific
  • South America
  • Middle East & Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Battery Systems for Electric Vehicles Market.

Available Customization

The analyst offers customization according to your specific needs. The following customization options are available for the report:
  • Detailed analysis and profiling of additional market players (up to five).

This product will be delivered within 1-3 business days.

Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends
4. Voice of Customer
5. Global Battery Systems for Electric Vehicles Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Battery Type (Lithium-Ion, Nickel-Metal Hydride Batteries, Lead-Acid Batteries, Other Types)
5.2.2. By Vehicle Type (Passenger Cars, Commercial Vehicle)
5.2.3. By Region
5.2.4. By Company (2025)
5.3. Market Map
6. North America Battery Systems for Electric Vehicles Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Battery Type
6.2.2. By Vehicle Type
6.2.3. By Country
6.3. North America: Country Analysis
6.3.1. United States Battery Systems for Electric Vehicles Market Outlook
6.3.2. Canada Battery Systems for Electric Vehicles Market Outlook
6.3.3. Mexico Battery Systems for Electric Vehicles Market Outlook
7. Europe Battery Systems for Electric Vehicles Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Battery Type
7.2.2. By Vehicle Type
7.2.3. By Country
7.3. Europe: Country Analysis
7.3.1. Germany Battery Systems for Electric Vehicles Market Outlook
7.3.2. France Battery Systems for Electric Vehicles Market Outlook
7.3.3. United Kingdom Battery Systems for Electric Vehicles Market Outlook
7.3.4. Italy Battery Systems for Electric Vehicles Market Outlook
7.3.5. Spain Battery Systems for Electric Vehicles Market Outlook
8. Asia-Pacific Battery Systems for Electric Vehicles Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Battery Type
8.2.2. By Vehicle Type
8.2.3. By Country
8.3. Asia-Pacific: Country Analysis
8.3.1. China Battery Systems for Electric Vehicles Market Outlook
8.3.2. India Battery Systems for Electric Vehicles Market Outlook
8.3.3. Japan Battery Systems for Electric Vehicles Market Outlook
8.3.4. South Korea Battery Systems for Electric Vehicles Market Outlook
8.3.5. Australia Battery Systems for Electric Vehicles Market Outlook
9. Middle East & Africa Battery Systems for Electric Vehicles Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Battery Type
9.2.2. By Vehicle Type
9.2.3. By Country
9.3. Middle East & Africa: Country Analysis
9.3.1. Saudi Arabia Battery Systems for Electric Vehicles Market Outlook
9.3.2. UAE Battery Systems for Electric Vehicles Market Outlook
9.3.3. South Africa Battery Systems for Electric Vehicles Market Outlook
10. South America Battery Systems for Electric Vehicles Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Battery Type
10.2.2. By Vehicle Type
10.2.3. By Country
10.3. South America: Country Analysis
10.3.1. Brazil Battery Systems for Electric Vehicles Market Outlook
10.3.2. Colombia Battery Systems for Electric Vehicles Market Outlook
10.3.3. Argentina Battery Systems for Electric Vehicles Market Outlook
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
12.1. Mergers & Acquisitions (If Any)
12.2. Product Launches (If Any)
12.3. Recent Developments
13. Global Battery Systems for Electric Vehicles Market: SWOT Analysis
14. Porter's Five Forces Analysis
14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Products
15. Competitive Landscape
15.1. A123 Systems LLC
15.1.1. Business Overview
15.1.2. Products & Services
15.1.3. Recent Developments
15.1.4. Key Personnel
15.1.5. SWOT Analysis
15.2. Altairnano
15.3. TRU Group Inc
15.4. Hitachi, Ltd.
15.5. Johnson Controls International PLC
15.6. LG Chem, Ltd.
15.7. NEC Corporation
15.8. Panasonic Corporation
15.9. Toshiba Corporation
15.10. Samsung SDI Co Ltd
16. Strategic Recommendations

Companies Mentioned

The key players profiled in this Battery Systems for Electric Vehicles market report include:
  • A123 Systems LLC
  • Altairnano
  • TRU Group Inc
  • Hitachi, Ltd.
  • Johnson Controls International PLC
  • LG Chem, Ltd.
  • NEC Corporation
  • Panasonic Corporation
  • Toshiba Corporation
  • Samsung SDI Co Ltd

Table Information