+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Mechatronics for Complex Products and Systems. Project-Based Design Approaches for Robots, Cyber-Physical Systems, Digital Twins, and Other Emerging Technologies. Edition No. 1

  • Book

  • 704 Pages
  • February 2025
  • John Wiley and Sons Ltd
  • ID: 6042037
A project-based approach to designing mechatronic systems with new and emerging technologies

In Mechatronics for Complex Products and Systems: Project-Based Designs for Cyber-Physical Systems, Digital Twins, and Other Emerging Technologies, distinguished researcher Dr. Zhuming Bi delivers an expert discussion of real-world mechatronics skills that students will need in their engineering careers.

The book explains the characteristics and innovation principles underlying mechatronic systems, including modularization, adaptability, predictability, sustainability, and concurrent engineering. A mechatronic system is decomposed into a set of mechatronic functional modules such as power systems, actuating systems, sensing systems, systems of signal conditioning and processing, and control systems.

The author also offers: - A thorough introduction from classic integration of mechanical, electronic and electrical systems to more complex products and systems, including cyber-physical systems, robotics, human-robot interactions, digital twins, and Internet of Things applications - Insightful project assignments that help reinforce a practical understanding of a learning subject - Practical discussions of real-world engineering problems - Comprehensive guidance on how to select the right type of sensors, motors, and controllers for a variety of mechatronic functional modules

Perfect for advanced undergraduate and graduate students of mechatronics, Mechatronics for Complex Products and Systems will also benefit professional engineers working on interdisciplinary projects enabled by digital technologies, Internet of Things (IoT), and Artificial Intelligence (AI).

Table of Contents

Preface xvii 

About the Companion Website xix 

1 Introduction 1 

1.1 Introduction 1 

1.2 Growing Complexity of Engineering Designs 1 

1.2.1 Products 3 

1.2.2 Manufacturing Technologies 5 

1.2.3 Business Environments 6 

1.2.4 Engineering Design 6 

1.3 Integrated Engineering Design 7 

1.4 Mechatronics for Multi- or Interdisciplinary Designs 9 

1.5 Mechatronic Design Examples 11 

1.5.1 Development of Football Robot Team 11 

1.5.2 Reusing Robots to Unload Heat Sinks Automatically 12 

1.5.3 Rebuilding Rail Test Machine 14 

1.5.4 Testing of Electric Hardness 16 

1.5.5 Valve Needle Assembly Station 16 

1.5.6 Ejecting Engine Fans from Performance Tester 18 

1.5.7 Demonstrator of Automated Spacer Removals in Truck Assembly Line 19 

1.6 Group Technologies (GTs) for Mechatronic Designs 21 

1.7 Mechatronics and Mechatronic Functional Modules (MFMs) 22 

1.8 Mechatronic Design Methodologies 24 

1.9 Organization of the Book 25 

1.10 Summary 26 

Problems 28 

References 28 

2 Mechatronic Designs - Innovations, Theories, and Methods 31 

2.1 Innovative Thinking 31 

2.2 Theory of Inventive Problem-Solving (TRIZ) as Tactic Methodology 34 

2.3 Innovations of Mechatronic Systems 39 

2.3.1 Modularization 39 

2.3.2 Integrability 41 

2.3.3 Coupled Discipline Modeling 42 

2.3.4 Concurrent Design 43 

2.3.5 Decentralized Controls 45 

2.3.6 Event-Driven Automation 46 

2.3.7 Adaptability and Re-configurability 46 

2.3.8 Predictability 48 

2.3.9 System Resilience 49 

2.3.10 Continuous Adaptation (CA) 50 

2.4 Architecture of Mechatronic Systems 51 

2.5 Design of Mechatronic Systems 54 

2.6 Mechatronic Design Methodologies 57 

2.6.1 System Modeling Language (SysML) 58 

2.6.2 Model-Based System Engineering (MBSE) 59 

2.6.3 Axiomatic Design Theory (ADT) 61 

2.6.4 Concurrent Design Optimization (CDO) 63 

2.6.5 Virtual Verification and Validation (VVV) 65 

2.7 Project-Based Mechatronic Design (PBMD) 65 

2.7.1 Existing Assistive Evacuating Technologies 66 

2.7.2 Proposed Assistive Evacuation Device 69 

2.7.3 Main Functional Requirements from Use Cases 69 

2.7.4 Project-Based Mechatronic Designs 72 

2.7.4.1 Folding and Unfolding Mechanism 72 

2.7.4.2 Reaction Forces on Tracks for Structural Elements 72 

2.7.4.3 Motor for Lifting Mechanism 74 

2.7.4.4 Control of Evacuation Device 76 

2.7.4.5 PBMD in Mechatronic Design 77 

2.8 Summary 77 

Problems 78 

References 81 

3 Power Generation, Storage, Supply and Transmission 87 

3.1 Introduction 87 

3.2 Energy, Work, and Power 87 

3.3 Energy Source 90 

3.4 Driving Components - Functional Requirements (FRs) 91 

3.5 Power Transmission 93 

3.5.1 Functional Requirements (FRs) 94 

3.5.2 Machine Elements for Power Transmission 95 

3.5.3 Types of Machine Elements 95 

3.5.4 Procedure in Designing or Selecting Machine Elements 95 

3.5.5 Machine Elements in Mechatronic Systems 98 

3.5.6 Mechanical Power Transmission Examples 98 

3.6 Power Generation 100 

3.6.1 Internal Combustion (IC) Generator 102 

3.6.2 Solar Power Generator 103 

3.6.3 Wind Turbine Generator 105 

3.6.4 Geothermal Generator 105 

3.6.5 Other Generators 106 

3.6.6 Selection of Power Source for Mechatronic System 107 

3.7 Requirements of Power Supplies and Storages 109 

3.7.1 Requirements of Power Supplies 109 

3.7.2 Classification of Energy Storage Systems 111 

3.7.3 Flywheel Energy Storage System (FESS) 112 

3.7.4 Pumped Hydro Energy Storage (PHES) 114 

3.7.5 Compressed Air Energy Storage (CAES) 115 

3.7.6 Gravity Energy Storage (GES) 115 

3.7.7 Electrical Energy Storage (EES) 116 

3.7.8 Thermal Energy Storage (TES) 118 

3.7.9 Comparison of Different Energy Storages 120 

3.8 Selection of Power Supplies 122 

3.9 Summary 122 

Problems 122 

References 123 

4 Actuating Systems 127 

4.1 Introduction 127 

4.2 Functional Requirements (FRs) 129 

4.3 Design Variables (DVs) 132 

4.4 Basics of Energy Conversion 135 

4.4.1 Mechanical Energy Conversion 135 

4.4.2 Electromechanical Energy Conversion 140 

4.4.3 Thermomechanical Energy Conversion 148 

4.4.4 Electro-stimulated Materials 149 

4.4.5 Magneto-rheological Fluid Energy Conversion 151 

4.4.6 Nano-level Energy Conversion 152 

4.5 Main Components 153 

4.6 Valve and Electric Actuators 154 

4.6.1 Valve Actuators 155 

4.6.2 Electric Actuators and Motors 157 

4.6.3 Selection of Motors 160 

4.7 Summary 161 

Problems 161 

References 162 

5 Sensing Systems 165 

5.1 Introduction 165 

5.2 Sensors, Actuators, and Transducers 169 

5.3 Classifications 170 

5.3.1 Types of Quantities to be Measured 170 

5.3.2 Requirements Related to Measurement 171 

5.3.3 Specifications Related to Measurement 171 

5.4 Working Principles 173 

5.4.1 Hooke’s Law 173 

5.4.2 Ohm’s Law 175 

5.4.3 Photoconductivity 176 

5.4.4 Hall Effect 177 

5.4.5 Faraday’s Law of Induction 178 

5.4.6 Curie-Weiss Law 179 

5.4.7 Time of Flight (ToF) 181 

5.5 Types of Physical Quantities 182 

5.5.1 Displacement, Position, and Proximity 182 

5.5.2 Velocity 184 

5.5.3 Acceleration 186 

5.5.4 Force 188 

5.5.4.1 Direct Contact Sensors 188 

5.5.4.2 Piezoelectric Sensors 189 

5.5.4.3 Conventional Force Sensors 190 

5.5.5 Pressure 191 

5.5.6 Contacts 193 

5.5.7 Temperature 195 

5.5.8 Chemical Particles 197 

5.6 Optical Encoders 199 

5.6.1 Resolutions 199 

5.6.2 Decoding 202 

5.7 Sensors in MEMS 203 

5.8 Summary 205 

Problems 205 

References 207 

6 Bridging Physical and Cyber Systems 209 

6.1 Introduction 209 

6.2 Characteristics of Signals 209 

6.2.1 Analog Signals 209 

6.2.2 Digital Signals 211 

6.3 Conversions of Digital and Analog Signals 212 

6.4 Basic Electronic Elements for DSP 213 

6.4.1 Operational Amplifiers (Op-Amps) 213 

6.4.2 Comparators 216 

6.5 Digitization 217 

6.5.1 Sampling 217 

6.5.2 Quantizing 220 

6.5.3 Sampling and Quantizing in Analog-to-Digital Conversion (ADC) 221 

6.6 Analog-to-Digital Conversion (ADC) 225 

6.6.1 Integrating ADC 226 

6.6.2 Flash Converter 227 

6.6.3 Successive Approximation 228 

6.7 Holding Process in Sampling 236 

6.8 Digital-to-Analog Conversion (DAC) 237 

6.8.1 Weighted Resistor DAC 237 

6.8.2 R-2R Ladder DAC 239 

6.8.3 Quantization Noise 240 

6.9 Summary 241 

Problems 241 

References 242 

7 Signal Conditioning and Processing 245 

7.1 Introduction 245 

7.2 Basic Concepts in Electronic Circuits 245 

7.2.1 Charge, Current, Voltage, and Power 245 

7.2.2 Resistor, Capacitor, and Inductor 248 

7.2.3 Input Loading and Output Loading 250 

7.2.4 Basic Types of Signals 251 

7.2.5 Main Parameters of Periodical Signals 254 

7.2.6 Amplitude and Phase Changes 254 

7.2.7 Wheatstone Bridges 257 

7.3 Signal Cleaning 259 

7.4 Signal Isolation 260 

7.4.1 Optical Isolation by Light-Emitting Diodes (LEDs) 260 

7.4.2 Capacitive Isolation by Capacitor 261 

7.4.3 Inductive Isolation by Inductor 261 

7.5 Signal Transmission 262 

7.5.1 Switches 262 

7.5.2 Multiplexer 262 

7.5.3 Protection from High Voltage and Current 264 

7.5.4 Modulation/Demodulation 265 

7.6 Signal Conditioning 266 

7.6.1 Amplification 266 

7.6.2 Attenuation 271 

7.6.3 Filtering 271 

7.6.4 Linearization 275 

7.6.5 Conditioning Digital Signals 275 

7.6.6 Signal Clipping 277 

7.7 Signal Clamping 277 

7.8 Summary 278 

Problems 278 

References 279 

8 System Controls 281 

8.1 Basics of Control Systems 281 

8.1.1 Complexity of Control Problem 281 

8.1.2 Types of Control Problems 283 

8.1.3 Architecture of Control Systems 284 

8.1.4 Design of Control Systems 285 

8.2 Control Theory 286 

8.2.1 Open-Loop Control Versus Closed-Loop Control 286 

8.2.2 Process Control Versus Motion Control 287 

8.2.3 Steady Response Versus Transient Response 288 

8.2.4 Transfer Functions 288 

8.2.5 Orders of Control Systems 292 

8.2.6 Stability Analysis 295 

8.2.7 Accuracy of Control Systems 299 

8.2.8 Classification of Control Systems 302 

8.2.9 Frequency Responses 303 

8.3 Proportional-Integral-Derivative (PID) Controls 305 

8.4 Analog and Digital Implementation of PID Controllers 307 

8.5 Advanced Controls 309 

8.6 Intelligent Controls 309 

8.6.1 Fuzzy Logic 310 

8.6.2 Artificial Neural Network (ANN) 310 

8.7 Design of Control System 312 

8.7.1 Microcontrollers 313 

8.7.2 Digital Signal Processing (DSP) 313 

8.7.3 Field Programmable Gate Arrays (FPGA) 315 

8.7.4 Microcomputers 316 

8.7.5 Programmable Logic Controller (PLC) 316 

8.8 Programming in PLC 318 

8.8.1 Data Structure and Flow 318 

8.8.2 Operating Cycle 319 

8.8.3 I/O Modules and Addresses 319 

8.8.4 Elements of Logic Control 322 

8.8.5 Ladder Logic Diagrams 325 

8.8.6 Timers and Counters 327 

8.8.7 Sequencers 328 

8.9 Summary 330 

Problems 331 

References 333 

9 Digital Twins (DT-I), Digital Triads (DT-II), and Internet of Digital Triads Things (IoDTT) 335 

9.1 Introduction 335 

9.2 Digital Twins (DT-I) 338 

9.3 Enabling Technologies 339 

9.3.1 Data Acquisition 339 

9.3.2 Modeling and Simulation 340 

9.3.3 Communication Technologies 340 

9.3.4 Cloud Technologies 340 

9.3.5 Big Data Analytics (BDA) 342 

9.4 From Digital to Physical Twins by Manufacturing 342 

9.5 DT-Is in Manufacturing 343 

9.5.1 System Digitization 347 

9.5.2 Interactions of Physical and Digital Worlds 348 

9.5.3 Historical Development of DT-I 349 

9.5.4 Communication and Integration 351 

9.5.5 System Architecture 353 

9.6 Limitations of DT-Is 354 

9.7 Advanced Attributes of Digital Entities in Manufacturing 355 

9.8 Concept of Digital Triad (DT-II) 356 

9.9 The Internet of Digital Triads Things (IoDTT) 360 

9.10 DT-Is and DT-IIs in Sustainable Mechatronic Systems 362 

9.10.1 Monitoring and Controlling 362 

9.10.2 Data-Driven Decision-Making 364 

9.10.3 Fault Detections 366 

9.10.4 Predication of Fatigue Life 368 

9.10.5 Virtual Verification and Validation (V and V) 370 

9.11 Summary 371 

Problems 371 

References 374 

10 Cyber-Physical Systems 379 

10.1 Introduction 379 

10.2 Characteristics of CPSs 382 

10.3 Basic Features of Cyber System of CPS 384 

10.3.1 Reactive Computation 385 

10.3.2 Parallel Computing 385 

10.3.3 Feedback Controls 385 

10.3.4 Realtime-Ness 385 

10.3.5 Dependability, Reliability, and Safety Assurance 386 

10.3.6 Biological Intelligence 387 

10.3.7 Hybrid Systems 387 

10.3.8 Embedded Computation 387 

10.3.9 Standards of Cyber Systems 387 

10.4 Design of CPSs 387 

10.5 Mathematical Modeling 388 

10.5.1 Modeling Continuous Dynamics 391 

10.5.2 Discrete Event Dynamic System (DEDS) 396 

10.5.3 Hybrid Modeling 398 

10.5.4 State Machines 400 

10.6 Development Standards 403 

10.7 Model-Based System Engineering (MBSE) 404 

10.7.1 Modeling in MBSE 404 

10.7.2 Design Stages in MBSE 405 

10.7.3 Acausality Modeling by Modelica 406 

10.7.4 Programming in Modelica 409 

10.7.5 Formal Semantics 412 

10.7.6 Verification and Validation (V&V) 414 

10.8 Summary 415 

Problems 416 

References 418 

11 Internet of Things 421 

11.1 Introduction 421 

11.1.1 IoT Concepts 422 

11.1.2 Smart Things 424 

11.1.3 Communication Protocols 425 

11.2 Characteristics of IoT-Enabled Systems 427 

11.3 Importance of IoT in Mechatronics 428 

11.4 Data Flows in IoT-Enabled Systems 431 

11.5 IoT-Enabled Capabilities 432 

11.5.1 Interactions 433 

11.5.2 Big Data Analytics (BDA) 435 

11.5.3 Digital Manufacturing (DM) 435 

11.6 Project-Based IoT-Enabled System Development 438 

11.6.1 Ubiquitous Sensing 439 

11.6.2 Fusing and Integrating Data from Heterogeneous Sources 439 

11.6.3 Methods of Coping with Big Data 440 

11.6.4 Surveillance and Data Visualization 441 

11.6.5 Workflow Composition 441 

11.6.6 Standardization of Specifications 444 

11.6.7 Data Acquisition, Classification, and Utilization 444 

11.7 Summary and Conclusion 445 

Problems 447 

References 447 

12 Robotics 451 

12.1 Introduction 451 

12.2 Classifications 454 

12.3 Basic Terminologies in Robotics 456 

12.3.1 Mechanical Structure 457 

12.3.2 Degrees of Freedom (DOF) 458 

12.3.3 Workspaces 462 

12.3.4 Modeling and Simulation 464 

12.3.5 Accuracy, Precision, and Calibration 464 

12.3.6 Other Specifications 465 

12.4 Kinematic Modeling 466 

12.4.1 Positions of Points, Links, and Bodies in 2D and 3D Space 466 

12.4.2 Motions of Particles, Links, and Bodies 468 

12.4.3 Vector-Loop Method for Motion Analysis of Plane Mechanism 473 

12.4.3.1 Kinematic Parameters and Variables 477 

12.4.3.2 Inverse Kinematics 477 

12.4.3.3 Forward Kinematics 478 

12.4.4 Denavit-Hartenberg (D-H) Notation 479 

12.4.5 Jacobian Matrix for Velocity Relations 481 

12.5 Dynamic Modeling 491 

12.5.1 Inertia and Moments of Inertia 491 

12.5.2 Newton-Euler Formulation 493 

12.5.3 Lagrangian Method 498 

12.6 Kinematic and Dynamics Modeling in Virtual Design 500 

12.6.1 Motion Simulation 502 

12.6.2 Model Preparation 502 

12.6.3 Creation of Simulation Model 504 

12.6.4 Define Motion Variables 504 

12.6.5 Setting Simulation Parameters 506 

12.6.6 Run Simulation and Visualize Motion 506 

12.6.7 Analyze Simulation Data 507 

12.6.8 Structural Simulation Using Motion Loads 508 

12.6.9 Summary on Kinematic and Dynamic Modeling 510 

12.7 Mobile Robots 511 

12.7.1 Three-Wheeled Robots 514 

12.7.2 Four-Wheeled Robots 515 

12.7.3 Unmanned Aerial Vehicles (UAVs) 516 

12.8 Robotic Programming 519 

12.9 Summary 521 

Problems 521 

References 524 

13 End-Effectors 527 

13.1 Introduction 527 

13.2 Grasping Theory 528 

13.2.1 Contacts on Object 528 

13.2.2 Motions and Forces 530 

13.2.3 Frictions 531 

13.2.4 Grasping Model 533 

13.2.5 Form Closure 534 

13.2.6 Force Closure 536 

13.2.7 Quality of Grasping 537 

13.3 Mechatronic Design of End-Effectors 537 

13.3.1 Mechanical and Actuating Components 538 

13.3.2 Sensing Components 541 

13.3.3 Control Components 542 

13.4 Evaluation of Grasping Performance 544 

13.5 Grasping Configurations 545 

13.6 Types of End-Effectors 546 

13.6.1 Types of Grippers 546 

13.6.2 Types of Processing Tools 548 

13.6.3 Multifunctional Tools 549 

13.6.3.1 Concepts 550 

13.6.3.2 Classification 550 

13.6.3.3 Advantages and Disadvantages 554 

13.6.3.4 Selection Principles 556 

13.6.3.5 Development Trends 556 

13.7 Main Factors in Designing an End-Effector 558 

13.8 Computer-Aided Design Tools for End-Effectors 560 

13.9 Summary 560 

Problems 560 

References 561 

14 Metaverses for Sustainability Mechatronic Systems 565 

14.1 Introduction 565 

14.2 FRs of Sustainable Mechatronic Systems 566 

14.2.1 Scalability, Accessibility, Security, Privacy, and Legal Issues 568 

14.2.2 First-Time-Right from Virtual to Physical World 568 

14.2.3 Ubiquitous Data and Computing 568 

14.2.4 Diagonalizability, Predictability, and Adaptability 569 

14.2.5 Human Intelligence for Uncertainty and Changes 570 

14.2.6 Data-Driven Decision-Making Supports 571 

14.3 Metaverse and Relevant Technologies 573 

14.3.1 Architecture or Framework 574 

14.3.2 Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and Extended Reality (ER) 576 

14.3.3 Digital Twins (DTs), Cyber-Physical Systems 578 

14.3.4 Internet of Things (IoT) and Edge Computing 579 

14.3.5 Big Data Analytics (BDA) and Cloud Computing (CC) 581 

14.3.6 Blockchain Technologies (BCTs) 581 

14.3.7 Artificial Intelligence (AI) 583 

14.3.8 Human-Machine Interactions (HMI) 585 

14.3.9 Data-Driven Decision-Making Systems 586 

14.4 Metaverses for Sustainability 587 

14.4.1 Metaverses to Deal with Changes and Uncertainties 588 

14.4.2 Sustainable Manufacturing 590 

14.4.3 Framework of Metaverse Use Cases 590 

14.4.4 Metaverses for Remote Access 592 

14.5 Summary and Future Work 593 

Problems 593 

References 594 

15 Human Cyber-Physical Systems (HCPS) 603 

15.1 Introduction 603 

15.2 Humans’ Roles in CPS 605 

15.3 Enabling Technologies 608 

15.4 Human-Machine Interactions (HMI) 610 

15.4.1 Collaborative Robots 610 

15.4.2 Types of HMIs 612 

15.4.3 Collaborative Machines in Manufacturing 613 

15.4.4 Critical Requirements of Cobots 613 

15.4.5 Safety Assurance Mechanisms for Cobots 616 

15.4.5.1 Safety-Rated Monitored Stop (SRMS) 616 

15.4.5.2 Hand Guiding (HG) 617 

15.4.5.3 Speed and Separation Monitoring (SSM) 618 

15.4.5.4 Power and Force Limiting (PFL) 618 

15.4.6 Cobotic Systems 618 

15.4.7 End-Effectors of Cobots 620 

15.4.7.1 Affordable Force Monitoring 620 

15.4.7.2 Ergonomic Protection of Grippers 621 

15.4.8 Safety Assurance in HCPSs 622 

15.5 Example of Assistive Technologies 622 

15.5.1 Cobots in Healthcare 622 

15.5.2 Conceptual Design of Cobot 623 

15.5.3 Kinematic Model 624 

15.5.4 Motion for Arbitrary Explicit Trajectory 625 

15.5.5 Motions of Omniwheels 626 

15.5.6 Dynamic Control Model 626 

15.5.6.1 Analyses of Force on Omniwheels 627 

15.5.6.2 Analyses of Force on Cobot Platform 628 

15.5.6.3 Constraints to Maintain Contacts to Ground 629 

15.5.6.4 Strategies of Cobot Controls 630 

15.5.7 Simulation 631 

15.5.8 Summary of HCPS as Assistive Technologies 632 

15.6 Brain-Computer Interfaces (BCI) for Supervisory Controls 634 

15.6.1 Unmanned Aerial Vehicles (UAVs) 634 

15.6.2 UAV Controls 635 

15.6.3 BCI for Effective HMI 636 

15.6.4 Development of BCIs 638 

15.6.4.1 Brain Signals 639 

15.6.4.2 Data Acquisition 640 

15.6.4.3 Feature Classification and Detection 642 

15.6.5 BCI Development Platform 645 

15.7 Summary 648 

Problems 649 

References 649 

Index 657

Authors

Zhuming Bi Shanghai University; Purdue University.