+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

The Global Industrial Decarbonization Market 2025-2035

  • PDF Icon

    Report

  • 1900 Pages
  • February 2025
  • Region: Global
  • Future Markets, Inc
  • ID: 6052495

The global market for industrial decarbonization technologies is experiencing substantial growth as industries worldwide seek to modernize operations and reduce environmental footprints. With the industrial sector accounting for 38% of global final energy consumption and 25% of direct CO2 emissions, there are significant opportunities for technological innovation and process improvement. The market is being shaped by a diverse portfolio of technologies at varying stages of maturity. Solutions including carbon capture and storage (CCS) and fuel switching to hydrogen or biomass, have demonstrated potential to reduce emissions by approximately 85% across most industrial sectors. Emerging electric technologies, though still at lower maturity levels, show theoretical potential to eliminate between 40% and 100% of direct emissions from energy-intensive industrial processes.

Market dynamics are currently driven by several forces, including increasingly stringent regulatory frameworks, growing corporate sustainability commitments, investor pressure, and consumer demand for low-carbon products. The EU's Carbon Border Adjustment Mechanism and similar policies emerging globally are creating economic incentives for industrial decarbonization, transforming what was once viewed as a cost center into a strategic business imperative. Investment in industrial decarbonization technologies reached $87 billion in 2022, with projections suggesting this figure could exceed $250 billion annually by 2030. This growth is supported by both public and private capital, with governments worldwide establishing industrial decarbonization funds and major industrial players committing substantial resources to emissions reduction technologies.

The market is segmented across multiple technology pathways. Electrification technologies, including high-temperature heat pumps and electric arc furnaces, are gaining traction in sectors previously dependent on fossil fuels. Hydrogen applications are advancing particularly in steel production, chemicals manufacturing, and high-temperature industrial processes. Biomass-based solutions are finding applications in sectors where renewable feedstocks can replace fossil inputs. CCS technologies are showing promise in hard-to-abate sectors like cement and chemicals.

Regional adoption patterns vary significantly. Europe leads in policy frameworks and early adoption, driven by the EU Green Deal and national initiatives. North America shows strong growth in CCS and hydrogen technologies, supported by the Inflation Reduction Act in the US. Asia-Pacific, particularly China, is making substantial investments in electrification and efficiency technologies, while rapidly developing industrial economies are focusing on leapfrogging to cleaner technologies rather than following traditional high-carbon development pathways.

Challenges to market growth include high capital costs, infrastructure requirements, technological uncertainties, and competitive pressures from regions with less stringent carbon regulations. The development of necessary infrastructure - including hydrogen networks, CO2 transport pipelines, and reinforced electrical grids - represents both a barrier and an opportunity.

Looking ahead, the market trajectory suggests a phased approach to industrial decarbonization. Near-term growth is concentrated in energy efficiency improvements and fuel switching, while medium-term expansion will likely focus on hydrogen applications and CCS. Long-term market development depends heavily on the commercialization of breakthrough technologies currently at low TRLs.

For these emerging technologies to reach their potential, continued research, development, and demonstration efforts are essential, supported by large-scale infrastructure investments and consistent policy frameworks. The rate at which these enabling conditions develop will ultimately determine how quickly the global market for industrial decarbonization technologies reaches its multi-trillion-dollar potential.

The Global Industrial Decarbonization Market 2025-2035 provides an in-depth analysis of industrial decarbonization trends and data from 2025 to 2035. The research covers technologies that reduce industrial carbon emissions while maintaining productivity and competitiveness. The report includes green hydrogen, carbon capture, industrial electrification, and green steel production with market forecasts across major sectors. Each technology section features cost benchmarking and carbon reduction metrics to support investment decisions. Regional coverage spans North America, Europe, Asia-Pacific, and emerging markets, including carbon pricing mechanisms and regulatory frameworks. The competitive landscape lists technology providers and industrial companies with their capabilities and market positions.

Report Contents include:  

  • Market Overview
    • Current Industrial Emissions
    • Regulatory Landscape
    • Technology Readiness Levels
  • Green Steel Technologies
    • Production Technologies
    • Advanced Materials
    • Market Applications
    • Market Forecast 2025-2035
  • Green Hydrogen
    • Production Technologies
    • Electrolyzer Technologies
    • Storage and Transport
    • Industrial Applications
    • Market Forecast 2025-2035
  • Carbon Capture and Storage
    • Direct Air Capture
    • Biomass Carbon Removal
    • Mineralization Methods
    • Ocean-based Removal
    • Market Forecast 2025-2035
  • Industrial Heat Decarbonization
    • Electric Heating Technologies
    • Heat Pumps
    • Biomass Solutions
    • Advanced Technologies
    • Market Forecast 2025-2035
  • Electrification of Industrial Processes
    • Electric Process Heating
    • Electrochemical Processes
    • Motors and Drives
    • Market Forecast 2025-2035
  • Circular Economy Solutions
    • Advanced Sorting Technologies
    • Recycling Technologies
    • Materials Recovery
    • Waste-to-Energy
    • Market Forecast 2025-2035
  • Environmental Technologies
    • Water Treatment
    • Air Quality Management
    • Soil Remediation
    • Digital Environmental Solutions
    • Market Forecast 2025-2035
  • Green Building Technologies
    • Sustainable Materials
    • Carbon Capture in Construction
    • Energy Efficiency Solutions
    • Market Forecast 2025-2035
  • Competitive Landscape
    • Technology Providers
    • Industrial Implementers
  • Infrastructure Requirements
    • Grid Integration
    • CO₂ Transport Networks
    • Hydrogen Infrastructure
  • Implementation Costs and Strategies
  • Future Outlook and Scenarios

 Over 1,000 companies are profiled including 1414 Degrees, A.Virtual, Aclarity, Adaptavate, Advanced Ionics, Allozymes, Adsorbi, Aerogel Core, Allonia, AGITEC International, Air Liquide, Air Products, Antora Energy, Aker Carbon Capture, Alchemy, Algoma Steel, Alison Hi-Tech, Alstom, Ambrell, Ambri, Andritz, Antora Energy, Aperam BioEnergia, ArcelorMittal, Ardent, Armacell International, Asahi Kasei, Autarkize, Augury, AutoGrid, BASF, Basilisk, Battery Pollution Technologies, Beltran Technologies, Betolar, Bio Fab NZ, Biohm, Biomason, BioZeroc, Blastr Green Steel, Blue Planet Systems, Blueshift Materials, Boreal Laser, Boston Metal, BP, Braincube, Brimstone, C-Zero, Cabot Corporation, Calgon Carbon, Cambridge Carbon Capture, Cambridge Electric Cement, Canvass Analytics, Carbogenics, CarbiCrete, Carbonaide, Carbon Clean, Carbon Engineering, CarbonCure, Carbon8 Systems, Carbon Ridge CEIA Power, Charbone Hydrogen, Chevron, China Baowu Steel Group, Chromalox, Chumpower, Clariant, Climeworks, Cummins, Coagtech, De Nora, Despatch Industries, Dow Chemical, Doosan Heavy Industries, Eaton, Electra Steel, Electric Hydrogen, Enapter, Electrified Thermal Solutions, Epoch Biodesign, Evoqua, Fero Labs, Fluor, FLSmidth, Fortescue, GE, GH Induction, Gradiant, Green Hydrogen Systems, HPNOw,  H2 Green Steel, H2Pro, HeatXcel, Heliogen, Heatrix GmbH, Honeywell, Hysata, IDOM, ION Clean Energy Ionomr Innovations, ITM Power, JFE Steel, Johnson Controls, Johnson Matthey, Kaneka, Kawasaki Heavy Industries, Kobe Steel, Kurita Water, Linde, LyondellBasell, MAN Energy, McPhy Energy, Metso Outotec, Microwave Chemical, Mitsubishi Heavy Industries, Modultherm, Nanjing Iron & Steel, Nel Hydrogen, Neustark, Nippon Steel, Novobiom,Ohmium, Ovivo, Pall Corporation, Phoenix Contact, Plenesys, Pluvion, Puraffinity, Promethean Particles, Pyrolyze, Quantafuel, Regal Rexnord, Repsol, Rondo Energy,Sabic, Salzgitter AG, Samsung Engineering, Sany Heavy Industry, Schneider Electric, Shell, Siemens, Siemens Energy, Smart Ops, SSAB, Starfire Industries, Statkraft, Stamicarbon, Stiesdal, Stoffu, Sublime Systems, Sunfire, Sunthru, Svante, Sympower, Tata Steel, Tenova, ThermCell, ThermFLEX, Thermon, ThyssenKrupp, Toshiba, Total Energies, Toyo Engineering, Trane Technologies, Umicore, UBreathe, Valmet, Vattenfall, Veolia, Vestas, Verdagy, Wärtsilä, Waste Management, Watlow, WEG, WesTech Engineering, Wood, Wärtsilä, Xcel Energy, Xylem, Yokogawa, Yosemite Clean Energy, ZeaChem, ZeePure, ZEG Power, Zenyatta and more......

Table of Contents

1           EXECUTIVE SUMMARY
1.1        Key findings and market opportunities
1.2        Market drivers and challenges
1.3        Investment landscape
1.4        Future outlook

2           GREEN STEEL
2.1        Current Steelmaking processes
2.2        "Double carbon" (carbon peak and carbon neutrality) goals and ultra-low emissions requirements
2.3        What is green steel?
2.3.1     Properties
2.3.2     Decarbonization target and policies
2.3.2.1  EU Carbon Border Adjustment Mechanism (CBAM)
2.3.3     Advances in clean production technologies
2.4        Production technologies
2.4.1     The role of hydrogen
2.4.2     Comparative analysis
2.4.3     Hydrogen Direct Reduced Iron (DRI)
2.4.4     Electrolysis
2.4.5     Carbon Capture, Utilization and Storage (CCUS)
2.4.6     Biochar replacing coke
2.4.7     Hydrogen Blast Furnace
2.4.8     Renewable energy powered processes
2.4.9     Flash ironmaking
2.4.10   Hydrogen Plasma Iron Ore Reduction
2.4.11   Ferrous Bioprocessing
2.4.12   Microwave Processing
2.4.13   Additive Manufacturing
2.4.14   Technology readiness level (TRL)
2.5        Advanced materials in green steel
2.5.1     Composite electrodes
2.5.2     Solid oxide materials
2.5.3     Hydrogen storage metals
2.5.4     Carbon composite steels
2.5.5     Coatings and membranes
2.5.6     Sustainable binders
2.5.7     Iron ore catalysts
2.5.8     Carbon capture materials
2.5.9     Waste gas utilization
2.6        Advantages and disadvantages of green steel
2.7        Markets and applications
2.8        Energy Savings and Cost Reduction in Steel Production
2.9        Digitalization
2.10      Biomass Steel Production and Sustainable Green Steel Production Chai
2.11      The Global Market for Green Steel
2.11.1   Global steel production
2.11.1.1      Steel prices
2.11.1.2      Green steel prices
2.11.2   Green steel plants and production, current and planned
2.11.3   Market map
2.11.4   SWOT analysis
2.11.5   Market trends and opportunities
2.11.6   Industry developments, funding and innovation 2022-2025
2.11.7   Market growth drivers
2.11.8   Market challenges
2.11.9   End-use industries
2.11.9.1      Automotive
2.11.9.1.1   Market overview
2.11.9.1.2   Applications
2.11.9.2      Construction
2.11.9.2.1   Market overview
2.11.9.2.2   Applications
2.11.9.3      Consumer appliances
2.11.9.3.1   Market overview
2.11.9.3.2   Applications
2.11.9.4      Machinery
2.11.9.4.1   Market overview
2.11.9.4.2   Applications
2.11.9.5      Rail
2.11.9.5.1   Market overview
2.11.9.5.2   Applications
2.11.9.6      Packaging
2.11.9.6.1   Market overview
2.11.9.6.2   Applications
2.11.9.7      Electronics
2.11.9.7.1   Market overview
2.11.9.7.2   Applications
2.12      Global market production and demand
2.12.1   Production Capacity 2020-2035
2.12.2   Production vs. Demand 2020-2035
2.12.3   Revenues 2020-2035
2.12.4   Competitive landscape
2.12.5   Future market outlook
2.13      Company profiles  (46 company profiles)

3           GREEN HYDROGEN
3.1        Hydrogen classification
3.1.1     Hydrogen colour shades
3.2        Global energy demand and consumption
3.3        The hydrogen economy and production
3.4        Removing CO2 emissions from hydrogen production
3.5        Hydrogen value chain
3.5.1     Production
3.5.2     Transport and storage
3.5.3     Utilization
3.6        National hydrogen initiatives, policy and regulation
3.7        Hydrogen certification
3.8        Carbon pricing
3.9        Market challenges
3.10      Industry developments 2020-2024
3.11      Market map
3.12      Global hydrogen production
3.12.1   Industrial applications
3.12.2   Hydrogen energy
3.12.2.1   Stationary use
3.12.2.2   Hydrogen for mobility
3.12.3   Current Annual H2 Production
3.12.4   Hydrogen production processes
3.12.4.1    Hydrogen as by-product
3.12.4.2    Reforming
3.12.4.2.1 SMR wet method
3.12.4.2.2 Oxidation of petroleum fractions
3.12.4.2.3 Coal gasification
3.12.4.3    Reforming or coal gasification with CO2 capture and storage
3.12.4.4    Steam reforming of biomethane
3.12.4.5    Water electrolysis
3.12.4.6    The "Power-to-Gas" concept
3.12.4.7    Fuel cell stack
3.12.4.8    Electrolysers
3.12.4.9    Other
3.12.4.9.1  Plasma technologies
3.12.4.9.2  Photosynthesis
3.12.4.9.3  Bacterial or biological processes
3.12.4.9.4  Oxidation (biomimicry)
3.12.5        Production costs
3.12.6        Global hydrogen demand forecasts
3.12.7        Hydrogen Production in the United States
3.12.7.1     Gulf Coast
3.12.7.2     California
3.12.7.3     Midwest
3.12.7.4     Northeast
3.12.7.5     Northwest
3.12.8        DOE Hydrogen Hubs
3.12.9        US Hydrogen Electrolyzer Capacities, Planned and Installed
3.13           Green hydrogen production
3.13.1        Overview
3.13.2        Green hydrogen projects
3.13.3        Motivation for use
3.13.4        Decarbonization
3.13.5        Comparative analysis
3.13.6        Role in energy transition
3.13.7        Renewable energy sources
3.13.7.1       Wind power
3.13.7.2       Solar Power
3.13.7.3       Nuclear
3.13.7.4       Capacities
3.13.7.5       Costs
3.13.8       SWOT analysis
3.14          Electrolyzer technologies
3.14.1       Introduction
3.14.2       Main types
3.14.3       Balance of Plant
3.14.4       Characteristics
3.14.5       Advantages and disadvantages
3.14.6      Electrolyzer market
3.14.6.1            Market trends
3.14.6.2            Market landscape
3.14.6.3            Innovations
3.14.6.4            Cost challenges
3.14.6.5            Scale-up
3.14.6.6            Manufacturing challenges
3.14.6.7            Market opportunity and outlook
3.14.7      Alkaline water electrolyzers (AWE)
3.14.7.1            Technology description
3.14.7.2            AWE plant
3.14.7.3            Components and materials
3.14.7.4            Costs
3.14.7.5            Companies
3.14.8      Anion exchange membrane electrolyzers (AEMEL)
3.14.8.1            Technology description
3.14.8.2            AEMEL plant
3.14.8.3            Components and materials
3.14.8.3.1        Catalysts
3.14.8.3.2        Anion exchange membranes (AEMs)
3.14.8.3.3        Materials
3.14.8.4            Costs
3.14.8.5            Companies
3.14.9      Proton exchange membrane electrolyzers (PEMEL)
3.14.9.1            Technology description
3.14.9.2            PEMEL plant
3.14.9.3            Components and materials
3.14.9.3.1         Membranes
3.14.9.3.2         Advanced PEMEL stack designs
3.14.9.3.3         Plug-and-Play & Customizable PEMEL Systems
3.14.9.3.4         PEMELs and proton exchange membrane fuel cells (PEMFCs)
3.14.9.4            Costs
3.14.9.5            Companies
3.14.10             Solid oxide water electrolyzers (SOEC)
3.14.10.1          Technology description
3.14.10.2          SOEC plant
3.14.10.3          Components and materials
3.14.10.3.1       External process heat
3.14.10.3.2       Clean Syngas Production
3.14.10.3.3       Nuclear power
3.14.10.3.4       SOEC and SOFC cells
3.14.10.3.4.1   Tubular cells
3.14.10.3.4.2   Planar cells
3.14.10.3.5      SOEC Electrolyte
3.14.10.4         Costs
3.14.10.5         Companies
3.14.11            Other types
3.14.11.1         Overview
3.14.11.2         CO2 electrolysis
3.14.11.2.1      Electrochemical CO2 Reduction
3.14.11.2.2      Electrochemical CO2 Reduction Catalysts
3.14.11.2.3      Electrochemical CO2 Reduction Technologies
3.14.11.2.4      Low-Temperature Electrochemical CO2 Reduction
3.14.11.2.5      High-Temperature Solid Oxide Electrolyzers
3.14.11.2.6      Cost
3.14.11.2.7      Challenges
3.14.11.2.8      Coupling H2 and Electrochemical CO2
3.14.11.2.9      Products
3.14.11.3         Seawater electrolysis
3.14.11.3.1      Direct Seawater vs Brine (Chlor-Alkali) Electrolysis
3.14.11.3.2      Key Challenges & Limitations
3.14.11.4         Protonic Ceramic Electrolyzers (PCE)
3.14.11.5         Microbial Electrolysis Cells (MEC)
3.14.11.6         Photoelectrochemical Cells (PEC)
3.14.11.7         Companies
3.14.12              Costs
3.14.13              Water and land use for green hydrogen production
3.14.14              Electrolyzer manufacturing capacities
3.15                Hydrogen storage and transport
3.15.1               Market overview
3.15.2               Hydrogen transport methods
3.15.2.1            Pipeline transportation
3.15.2.2            Road or rail transport
3.15.2.3            Maritime transportation
3.15.2.4            On-board-vehicle transport
3.15.3               Hydrogen compression, liquefaction, storage
3.15.3.1            Solid storage
3.15.3.2            Liquid storage on support
3.15.3.3            Underground storage
3.15.3.4            Subsea Hydrogen Storage
3.15.4              Market players
3.16                 Hydrogen utilization
3.16.1              Hydrogen Fuel Cells
3.16.2               Market overview
3.16.2.1            PEM fuel cells (PEMFCs)
3.16.2.2            Solid oxide fuel cells (SOFCs)
3.16.2.3            Alternative fuel cells
3.16.3               Alternative fuel production
3.16.3.1            Solid Biofuels
3.16.3.2            Liquid Biofuels
3.16.3.3            Gaseous Biofuels
3.16.3.4            Conventional Biofuels
3.16.3.5            Advanced Biofuels
3.16.3.6            Feedstocks
3.16.3.7            Production of biodiesel and other biofuels
3.16.3.8            Renewable diesel
3.16.3.9            Biojet and sustainable aviation fuel (SAF)
3.16.3.10          Electrofuels (E-fuels, power-to-gas/liquids/fuels)
3.16.3.10.1       Hydrogen electrolysis
3.16.3.10.2       eFuel production facilities, current and planned
3.16.4               Hydrogen Vehicles
3.16.4.1            Market overview
3.16.5               Aviation
3.16.5.1            Market overview
3.16.6               Ammonia production
3.16.6.1            Market overview
3.16.6.2            Decarbonisation of ammonia production
3.16.6.3            Green ammonia synthesis methods
3.16.6.3.1         Haber-Bosch process
3.16.6.3.2         Biological nitrogen fixation
3.16.6.3.3         Electrochemical production
3.16.6.3.4         Chemical looping processes
3.16.6.4            Blue ammonia
3.16.6.4.1         Blue ammonia projects
3.16.6.5            Chemical energy storage
3.16.6.5.1         Ammonia fuel cells
3.16.6.5.2         Marine fuel
3.16.7               Methanol production
3.16.7.1            Market overview
3.16.7.2            Methanol-to gasoline technology
3.16.7.2.1         Production processes
3.16.7.2.1.1      Anaerobic digestion
3.16.7.2.1.2      Biomass gasification
3.16.7.2.1.3      Power to Methane
3.16.8               Steelmaking
3.16.8.1            Market overview
3.16.8.2            Comparative analysis
3.16.8.3            Hydrogen Direct Reduced Iron (DRI)
3.16.9               Power & heat generation
3.16.9.1            Market overview
3.16.9.1.1         Power generation
3.16.9.1.2         Heat Generation
3.16.10             Maritime
3.16.10.1          Market overview
3.16.11             Fuel cell trains
3.16.11.1          Market overview
3.17                 Company profiles  (130 company profiles)

4          CARBON CAPTURE AND STORAGE
4.1       Main sources of carbon dioxide emissions
4.2       CO2 as a commodity
4.3       History and evolution of carbon markets
4.4       Meeting climate targets
4.5       Mitigation costs of CDR technologies
4.6       Market map
4.7       CDR in voluntary carbon markets
4.8       CDR investments
4.9       Carbon Dioxide Removal (CDR) and Carbon Capture, Utilization, and Storage (CCUS)
4.10     Market size
4.10.1  Carbon dioxide removal capacity by technology
4.10.2  DACCS Carbon Removal
4.10.3  BECCS Carbon Removal
4.10.4  Biochar and Biomass Burial Carbon Removal
4.10.5  Mineralization Carbon Removal
4.10.6  Ocean-based Carbon Removal
4.11     Introduction
4.11.1   Conventional CDR on land
4.11.1.1  Wetland and peatland restoration
4.11.1.2  Cropland, grassland, and agroforestry
4.11.2   Main CDR methods
4.11.3   Novel CDR methods
4.11.4   Market drivers
4.11.5   Value chain
4.11.6   Deployment of carbon dioxide removal technologies
4.12      Carbon credits
4.12.1   Description
4.12.2   Carbon pricing
4.12.3   Carbon Removal vs Carbon Avoidance Offsetting
4.12.4   Carbon credit certification
4.12.5   Carbon registries
4.12.6   Carbon credit quality
4.12.7   Voluntary Carbon Credits
4.12.7.1            Definition
4.12.7.2            Purchasing
4.12.7.3            Market players
4.12.7.4            Pricing
4.12.8   Compliance Carbon Credits
4.12.8.1            Definition
4.12.8.2            Market players
4.12.8.3            Pricing
4.12.9   Durable carbon dioxide removal (CDR) credits
4.12.10              Corporate commitments
4.12.11              Increasing government support and regulations
4.12.12              Advancements in carbon offset project verification and monitoring
4.12.13              Potential for blockchain technology in carbon credit trading
4.12.14              Buying and Selling Carbon Credits
4.12.14.1         Carbon credit exchanges and trading platforms
4.12.14.2         Over-the-counter (OTC) transactions
4.12.14.3         Pricing mechanisms and factors affecting carbon credit prices
4.12.15              Certification
4.12.16              Challenges and risks
4.13       Biomass with Carbon Removal and Storage (BiCRS)
4.13.1    Feedstocks
4.13.2    BiCRS Conversion Pathways
4.13.3    Bioenergy with carbon capture and storage (BECCS)
4.13.3.1            Biomass conversion
4.13.3.2            CO2 capture technologies
4.13.3.3            BECCS facilities
4.13.3.4            Cost analysis
4.13.4    Market size
4.13.4.1            BECCS carbon credits
4.13.4.2            Challenges
4.13.5    BIochar
4.13.5.1            What is biochar?
4.13.5.2            Properties of biochar
4.13.5.3            Feedstocks
4.13.5.4            Production processes
4.13.5.4.1        Sustainable production
4.13.5.4.2        Pyrolysis
4.13.5.4.2.1   Slow pyrolysis
4.13.5.4.2.2   Fast pyrolysis
4.13.5.4.3        Gasification
4.13.5.4.4        Hydrothermal carbonization (HTC)
4.13.5.4.5        Torrefaction
4.13.5.4.6        Equipment manufacturers
4.13.5.5            Biochar pricing
4.13.5.6            Biochar carbon credits
4.13.5.6.1        Overview
4.13.5.6.2        Removal and reduction credits
4.13.5.6.3        The advantage of biochar
4.13.5.6.4        Prices
4.13.5.6.5        Buyers of biochar credits
4.13.5.6.6        Competitive materials and technologies
4.13.6     Approaches beyond BECCS and biochar
4.13.6.1            Bio-oil based CDR
4.13.6.2            Integration of biomass-derived carbon into steel and concrete
4.13.6.3            Bio-based construction materials for CDR
4.14         Direct Air Capture and Storage (DACCS)
4.14.1      Description
4.14.2      Deployment
4.14.3     Point source carbon capture versus Direct Air Capture
4.14.4     DAC and other Energy Sources
4.14.5     Deployment and Scale-Up
4.14.6     Costs
4.14.7     Technologies
4.14.7.1            Solid sorbents
4.14.7.2            Liquid sorbents
4.14.7.3            Liquid solvents
4.14.7.4            Airflow equipment integration
4.14.7.5            Passive Direct Air Capture (PDAC)
4.14.7.6            Direct conversion
4.14.7.7            Co-product generation
4.14.7.8            Low Temperature DAC
4.14.7.9            Regeneration methods
4.14.7.10         Commercialization and plants
4.14.7.11         Metal-organic frameworks (MOFs) in DAC
4.14.8     DAC plants and projects-current and planned
4.14.9     Markets for DAC
4.14.10              Cost analysis
4.14.11              Challenges
4.14.12              SWOT analysis
4.14.13              Players and production
4.15       Mineralization-based CDR
4.15.1    Overview
4.15.2    Storage in CO2-Derived Concrete
4.15.3    Oxide Looping
4.15.4    Enhanced Weathering
4.15.4.1            Overview
4.15.4.2            Benefits
4.15.4.3            Monitoring, Reporting, and Verification (MRV)
4.15.4.4            Applications
4.15.4.5            Commercial activity and companies
4.15.4.6            Challenges and Risks
4.15.5    Cost analysis
4.15.6    SWOT analysis
4.16       Afforestation/Reforestation
4.16.1    Overview
4.16.2    Carbon dioxide removal methods
4.16.2.1            Nature-based CDR
4.16.2.2            Land-based CDR
4.16.3    Technologies
4.16.3.1            Remote Sensing
4.16.3.2            Drone technology and robotics
4.16.3.3            Automated forest fire detection systems
4.16.3.4            AI/ML
4.16.3.5            Genetics
4.16.4    Trends and Opportunities
4.16.5     Challenges and Risks
4.16.5.1  SWOT analysis
4.17        Soil carbon sequestration (SCS)
4.17.1     Overview
4.17.2     Practices
4.17.3     Measuring and Verifying
4.17.4     Companies
4.17.5     Trends and Opportunities
4.17.6     Carbon credits
4.17.7     Challenges and Risks
4.17.8     SWOT analysis
4.18        Ocean-based CDR
4.18.1     Overview
4.18.2     CO2 capture from seawater
4.18.3     Ocean fertilisation
4.18.3.1            Biotic Methods
4.18.3.2            Coastal blue carbon ecosystems
4.18.3.3            Algal Cultivation
4.18.3.4            Artificial Upwelling
4.18.4    Ocean alkalinisation
4.18.4.1            Electrochemical ocean alkalinity enhancement
4.18.4.2            Direct Ocean Capture
4.18.4.3            Artificial Downwelling
4.18.5    Monitoring, Reporting, and Verification (MRV)
4.18.6    Ocean-based CDR Carbon Credits
4.18.7    Trends and Opportunities
4.18.8     Ocean-based carbon credits
4.18.9     Cost analysis
4.18.10              Challenges and Risks
4.18.11              SWOT analysis
4.18.12              Companies
4.19        Company profiles  (143 company profiles)

5          INDUSTRIAL HEAT DECARBONIZATION
5.1       Market overview
5.1.1    Industrial Heat: Current State and Decarbonization Imperative
5.1.2    Industrial Decarbonization Incentives
5.1.3    Technology Maturity Overview
5.2        Cost Competitiveness Analysis
5.2.1    Carbon Abatement Potential
5.3        Technologies
5.3.1    Electric Heating
5.3.1.1 Resistance Heating
5.3.1.1.1           Direct Resistance
5.3.1.1.2           Indirect Resistance
5.3.1.1.3           Infrared Heating
5.3.1.2 Induction Heating
5.3.1.2.1           High-Frequency Systems
5.3.1.2.2           Medium-Frequency Systems
5.3.1.2.3           Low-Frequency Systems
5.3.1.3 Microwave Heating
5.3.1.3.1           Single-Mode Systems
5.3.1.3.2           Multi-Mode Systems
5.3.1.3.3           Advanced Control Systems
5.3.1.4 Plasma Heating
5.3.1.4.1           Thermal Plasma
5.3.1.4.2           Non-Thermal Plasma
5.3.1.4.3           Hybrid Plasma Systems
5.3.2    Heat Pumps
5.3.2.1 High-Temperature Systems
5.3.2.1.1           Vapor Compression
5.3.2.1.2           Absorption Systems
5.3.2.1.3           Hybrid Configurations
5.3.2.2 Integration Strategies
5.3.2.2.1           Process Integration
5.3.2.2.2           Cascade Systems
5.3.2.2.3           Multi-Source Integration
5.3.2.3 Emerging Technologies
5.3.2.3.1           Chemical Heat Pumps
5.3.2.3.2           Magnetocaloric Systems
5.3.2.3.3           Thermoacoustic Heat Pumps
5.3.3    Biomass Solutions
5.3.3.1 Advanced Feedstock Processing
5.3.3.1.1           Torrefaction
5.3.3.1.2           Pelletization
5.3.3.1.3           Gasification
5.3.3.2 Combustion Technologies
5.3.3.2.1           Fluidized Bed Systems
5.3.3.2.2           Grate Firing Systems
5.3.3.2.3           6.4.2.3 Pulverized Biomass
5.3.3.3 Emerging Biomass Technologies
5.3.3.3.1           Supercritical Water Gasification
5.3.3.3.2           Plasma-Assisted Combustion
5.3.3.3.3           Chemical Looping
5.3.4    Advanced and Emerging Technologies
5.3.4.1 Solar Thermal
5.3.4.1.1           Concentrated Solar Power
5.3.4.1.2           Solar-Hydrogen Hybrid Systems
5.3.4.2 Geothermal
5.3.4.2.1           Deep Geothermal
5.3.4.2.2           Enhanced Geothermal Systems
5.3.4.3 Novel Heat Storage
5.3.4.3.1           Thermochemical Storage
5.3.4.3.2           Phase Change Materials
5.3.4.3.3           Molten Salt Systems
5.3.4.4 Artificial Intelligence and Digital Technologies
5.3.4.4.1           Predictive Maintenance
5.3.4.4.2           Process Optimization
5.3.4.4.3           Digital Twins
5.4        Markets and Applications
5.4.1    Process Industries
5.4.1.1 Chemical Industry
5.4.1.2 Food Processing
5.4.1.3 Paper and Pulp
5.4.1.4 Glass and Ceramics
5.4.2    Metal Processing
5.4.2.1 Steel Industry
5.4.2.2 Aluminum Production
5.4.2.3 Other Metals
5.4.3    Building Materials
5.4.3.1 Cement Production
5.4.3.2 Brick Manufacturing
5.4.3.3 Other Materials
5.5        System Integration
5.5.1    Heat Recovery Systems
5.5.1.1 Technology Options
5.5.1.2 Efficiency Analysis
5.5.1.3 Implementation Strategies
5.5.2    Process Optimization
5.5.2.1 Energy Management
5.5.2.2 Control Systems
5.5.2.3 Performance Monitoring
5.6        Market Analysis
5.6.1    Cost Analysis
5.6.2    Future Outlook
5.7        Company profiles     (45 company profiles)

6          ELECTRIFICATION OF INDUSTRIAL PROCESSES
6.1       Grid Integration and Power Systems
6.1.1    Grid Requirements
6.1.1.1  Power Quality
6.1.1.2  Capacity Planning
6.1.1.3  Smart Grid Integration
6.1.2     Energy Storage Systems
6.1.2.1  Battery Storage
6.1.2.2  Thermal Storage
6.1.2.3  Hybrid Systems
6.1.3     Renewable Energy Integration
6.1.3.1  Solar PV Integration
6.1.3.2  Wind Power Integration
6.1.3.3  Hybrid Power Systems
6.2        Electric Process Heating
6.2.1     Resistance Heating Systems
6.2.1.1  Direct Resistance Heating
6.2.1.2  Indirect Resistance Heating
6.2.1.3  Immersion Heating
6.2.1.4  Advanced Control Systems
6.2.2     Induction Technology
6.2.2.1  High-Frequency Systems
6.2.3     Medium-Frequency Systems
6.2.3.1  Low-Frequency Systems
6.2.3.2  Advanced Power Supply
6.2.4     Infrared Heating
6.2.4.1  Short-wave Systems
6.2.4.2  Medium-wave Systems
6.2.4.3  Long-wave Systems
6.2.4.4  Hybrid Solutions
6.2.5     Dielectric Heating
6.2.5.1  Microwave Systems
6.2.5.2  Radio Frequency Systems
6.2.5.3  Advanced Control
6.2.6     Plasma Systems
6.2.6.1  Thermal Plasma
6.2.6.2  Non-Thermal Plasma
6.2.6.3  Hybrid Plasma Systems
6.3        Electrochemical Processes
6.3.1     Advanced Electrolysis Systems
6.3.1.1  Alkaline Electrolysis
6.3.1.2  PEM Electrolysis
6.3.1.3  Solid Oxide Electrolysis
6.3.2     Electrochemical Reactors
6.3.2.1  Flow Reactors
6.3.2.2  Batch Reactors
6.3.2.3  Novel Designs
6.3.3     Membrane Technologies
6.3.3.1  Ion Exchange Membranes
6.3.3.2  Ceramic Membranes
6.3.3.3  Composite Membranes
6.4        Electric Motors and Drives
6.4.1     Advanced Motor Technologies
6.4.1.1  Permanent Magnet Motors
6.4.1.2  Synchronous Reluctance Motors
6.4.1.3  High-Speed Motors
6.5        Emerging Technologies
6.5.1     Digital Twin Technologies
6.5.1.1  Process Modeling
6.5.1.2  Real-time Optimization
6.5.2     AI and Machine Learning
6.5.2.1  Predictive Maintenance
6.5.2.2  Process Optimization
6.5.2.3  Energy Management
6.5.3     Novel Heating Technologies
6.5.3.1  Ultrasonic Heating
6.5.3.2  Electron Beam Processing
6.5.3.3  Laser Processing
6.6         Applications
6.6.1      Chemical Industry
6.6.1.1   Process Electrification
6.6.1.2   Energy Integration
6.6.2      Metal Processing
6.6.2.1   Melting and Casting
6.6.2.2   Heat Treatment
6.6.2.3   Surface Processing
6.6.3      Food and Beverage
6.6.3.1   Heating Processes
6.6.3.2   Cooling Systems
6.6.3.3   Process Integration
6.6.4      Mining and Minerals
6.6.4.1   Equipment Electrification
6.6.4.2   Process Conversion
6.6.4.3   Energy Management
6.7         Company profiles    (245 company profiles)

7           CIRCULAR ECONOMY SOLUTIONS
7.1        Advanced Sorting and Detection Technologies
7.1.1     Artificial Intelligence and Machine Learning
7.1.2     Computer Vision Systems
7.1.3     Deep Learning Algorithms
7.1.4     Real-time Sorting
7.2        Spectroscopic Technologies
7.2.1     NIR Spectroscopy
7.2.2     Raman Spectroscopy
7.2.3     X-ray Technologies
7.2.4     Robotic Sorting Systems
7.2.5     Automated Processing Lines
7.2.6     Quality Control Systems
7.3        Recycling Technologies
7.3.1     Pyrolysis
7.3.1.1  Non-catalytic
7.3.1.2  Catalytic
7.3.1.2.1           Polystyrene pyrolysis
7.3.1.2.2           Pyrolysis for production of bio fuel
7.3.1.2.3           Used tires pyrolysis
7.3.1.2.3.1        Conversion to biofuel
7.3.1.2.4           Co-pyrolysis of biomass and plastic wastes
7.3.1.3  Companies and capacities
7.3.2     Gasification
7.3.2.1  Technology overview
7.3.2.1.1           Syngas conversion to methanol
7.3.2.1.2           Biomass gasification and syngas fermentation
7.3.2.1.3           Biomass gasification and syngas thermochemical conversion
7.3.2.2  Companies and capacities (current and planned)
7.3.3     Dissolution
7.3.3.1  Technology overview
7.3.3.2  Companies and capacities (current and planned)
7.3.4     Depolymerisation
7.3.4.1  Hydrolysis
7.3.4.1.1           Technology overview
7.3.4.1.2           SWOT analysis
7.3.4.2  Enzymolysis
7.3.4.2.1           Technology overview
7.3.4.2.2           SWOT analysis
7.3.4.3  Methanolysis
7.3.4.3.1           Technology overview
7.3.4.3.2           SWOT analysis
7.3.4.4  Glycolysis
7.3.4.4.1           Technology overview
7.3.4.4.2           SWOT analysis
7.3.4.5  Aminolysis
7.3.4.5.1           Technology overview
7.3.4.5.2           SWOT analysis
7.3.4.6  Companies and capacities (current and planned)
7.3.5     Other advanced chemical recycling technologies
7.3.5.1  Hydrothermal cracking
7.3.5.2  Pyrolysis with in-line reforming
7.3.5.3  Microwave-assisted pyrolysis
7.3.5.4  Plasma pyrolysis
7.3.5.5  Plasma gasification
7.3.5.6  Supercritical fluids
7.3.5.7  Carbon fiber recycling
7.3.5.7.1           Processes
7.3.5.7.2           Companies
7.3.6     Advanced recycling of thermoset materials
7.3.6.1  Thermal recycling
7.3.6.1.1           Energy Recovery Combustion
7.3.6.1.2           Anaerobic Digestion
7.3.6.1.3           Pyrolysis Processing
7.3.6.1.4           Microwave Pyrolysis
7.3.6.2   Solvolysis
7.3.6.3   Catalyzed Glycolysis
7.3.6.4   Alcoholysis and Hydrolysis
7.3.6.5   Ionic liquids
7.3.6.6   Supercritical fluids
7.3.6.7   Plasma
7.3.6.8   Companies
7.3.7      Comparison with Traditional Recycling Methods
7.3.7.1   Mechanical Recycling Limitations
7.3.7.2   Energy Efficiency Comparison
7.3.7.3   Quality of Output Comparison
7.3.7.4   Cost Analysis
7.3.8      Environmental Impact Assessment
7.3.8.1   Carbon Footprint Analysis
7.3.8.2   Energy Consumption Assessment
7.3.8.3   Waste Reduction Potential
7.3.8.4   Sustainability Metrics
7.3.9      Emerging Technologies
7.3.9.1   AI and Machine Learning Applications
7.3.9.1.1           Sorting Optimization
7.3.9.1.2           Process Control
7.3.9.1.3           Quality Prediction
7.3.9.1.4           Maintenance Prediction
7.4          Materials Recovery
7.4.1       Critical Raw Materials
7.4.2       Global market forecasts
7.4.2.1    By Material Type (2025-2040)
7.4.2.2    By Recovery Source (2025-2040)
7.4.3       Metals and minerals processed and extracted
7.4.3.1    Copper
7.4.3.1.1           Global copper demand and trends
7.4.3.1.2           Markets and applications
7.4.3.1.3           Copper extraction and recovery
7.4.3.2    Nickel
7.4.3.2.1           Global nickel demand and trends
7.4.3.2.2           Markets and applications
7.4.3.2.3           Nickel extraction and recovery
7.4.3.3    Cobalt
7.4.3.3.1           Global cobalt demand and trends
7.4.3.3.2           Markets and applications
7.4.3.3.3           Cobalt extraction and recovery
7.4.3.4    Rare Earth Elements (REE)
7.4.3.4.1           Global Rare Earth Elements demand and trends
7.4.3.4.2           Markets and applications
7.4.3.4.3           Rare Earth Elements extraction and recovery
7.4.3.4.4           Recovery of REEs from secondary resources
7.4.3.5    Lithium
7.4.3.5.1           Global lithium demand and trends
7.4.3.5.2           Markets and applications
7.4.3.5.3           Lithium extraction and recovery
7.4.3.6     Gold
7.4.3.6.1           Global gold demand and trends
7.4.3.6.2           Markets and applications
7.4.3.6.3           Gold extraction and recovery
7.4.3.7     Uranium
7.4.3.7.1           Global uranium demand and trends
7.4.3.7.2           Markets and applications
7.4.3.7.3           Uranium extraction and recovery
7.4.3.8      Zinc
7.4.3.8.1           Global Zinc demand and trends
7.4.3.8.2           Markets and applications
7.4.3.8.3           Zinc extraction and recovery
7.4.3.9      Manganese
7.4.3.9.1           Global manganese demand and trends
7.4.3.9.2           Markets and applications
7.4.3.9.3           Manganese extraction and recovery
7.4.3.10            Tantalum
7.4.3.10.1        Global tantalum demand and trends
7.4.3.10.2        Markets and applications
7.4.3.10.3        Tantalum extraction and recovery
7.4.3.11            Niobium
7.4.3.11.1        Global niobium demand and trends
7.4.3.11.2        Markets and applications
7.4.3.11.3        Niobium extraction and recovery
7.4.3.12            Indium
7.4.3.12.1        Global indium demand and trends
7.4.3.12.2        Markets and applications
7.4.3.12.3        Indium extraction and recovery
7.4.3.13            Gallium
7.4.3.13.1        Global gallium demand and trends
7.4.3.13.2        Markets and applications
7.4.3.13.3        Gallium extraction and recovery
7.4.3.14            Germanium
7.4.3.14.1        Global germanium demand and trends
7.4.3.14.2        Markets and applications
7.4.3.14.3        Germanium extraction and recovery
7.4.3.15            Antimony
7.4.3.15.1        Global antimony demand and trends
7.4.3.15.2        Markets and applications
7.4.3.15.3        Antimony extraction and recovery
7.4.3.16            Scandium
7.4.3.16.1        Global scandium demand and trends
7.4.3.16.2        Markets and applications
7.4.3.16.3        Scandium extraction and recovery
7.4.3.17            Graphite
7.4.3.17.1        Global graphite demand and trends
7.4.3.17.2        Markets and applications
7.4.3.17.3        Graphite extraction and recovery
7.4.4       Recovery sources
7.4.4.1     Primary sources
7.4.4.2     Secondary sources
7.4.4.2.1           Extraction
7.4.4.2.1.1      Hydrometallurgical extraction
7.4.4.2.1.1.1  Overview
7.4.4.2.1.1.2  Lixiviants
7.4.4.2.1.1.3  SWOT analysis
7.4.4.2.1.2      Pyrometallurgical extraction
7.4.4.2.1.2.1  Overview
7.4.4.2.1.2.2  SWOT analysis
7.4.4.2.1.3      Biometallurgy
7.4.4.2.1.3.1  Overview
7.4.4.2.1.3.2  SWOT analysis
7.4.4.2.1.4      Ionic liquids and deep eutectic solvents
7.4.4.2.1.4.1  Overview
7.4.4.2.1.4.2  SWOT analysis
7.4.4.2.1.5      Electroleaching extraction
7.4.4.2.1.5.1  Overview
7.4.4.2.1.5.2  SWOT analysis
7.4.4.2.1.6      Supercritical fluid extraction
7.4.4.2.1.6.1  Overview
7.4.4.2.1.6.2  SWOT analysis
7.4.4.2.2           Recovery
7.4.4.2.2.1      Solvent extraction
7.4.4.2.2.1.1  Overview
7.4.4.2.2.1.2  Rare-Earth Element Recovery
7.4.4.2.2.1.3  WOT analysis
7.4.4.2.2.2      Ion exchange recovery
7.4.4.2.2.2.1  Overview
7.4.4.2.2.2.2  SWOT analysis
7.4.4.2.2.3      Ionic liquid (IL) and deep eutectic solvent (DES) recovery
7.4.4.2.2.3.1  Overview
7.4.4.2.2.3.2  SWOT analysis
7.4.4.2.2.4      Precipitation
7.4.4.2.2.4.1  Overview
7.4.4.2.2.4.2  Coagulation and flocculation
7.4.4.2.2.4.3  SWOT analysis
7.4.4.2.2.5      Biosorption
7.4.4.2.2.5.1  Overview
7.4.4.2.2.5.2  SWOT analysis
7.4.4.2.2.6      Electrowinning
7.4.4.2.2.6.1  Overview
7.4.4.2.2.6.2  SWOT analysis
7.4.4.2.2.7      Direct materials recovery
7.4.4.2.2.7.1  Overview
7.4.4.2.2.7.2  Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis
7.4.4.2.2.7.3  Rare-earth Magnet Recycling by Hydrogen Decrepitation
7.4.4.2.2.7.4  Direct Recycling of Li-ion Battery Cathodes by Sintering
7.4.4.2.2.7.5  SWOT analysis
7.4.5    Metal Recovery Technologies
7.4.5.1 Pyrometallurgy
7.4.5.2 Hydrometallurgy
7.4.5.3 Biometallurgy
7.4.5.4 Supercritical Fluid Extraction
7.4.5.5 Electrokinetic Separation
7.4.5.6 Mechanochemical Processing
7.4.6    Global market 2025-2040
7.4.6.1 Ktonnes
7.4.6.2 Revenues
7.4.6.3 Regional
7.5        Company profiles   (339 company profiles)

8           ENVIRONMENTAL TECHNOLOGIES
8.1        Market Overview
8.2        Water Treatment Technologies
8.2.1     Advanced Membrane Systems
8.2.1.1  Next-Generation Membranes
8.2.1.1.1           Graphene-Based Membranes
8.2.1.1.2           Biomimetic Membranes
8.2.1.1.3           Mixed Matrix Membranes
8.2.1.2   Membrane Processes
8.2.1.2.1           Ultrafiltration Advances
8.2.1.2.2           Reverse Osmosis Innovations
8.2.1.2.3           Forward Osmosis Systems
8.2.1.3   Anti-Fouling Technologies
8.2.1.3.1           Surface Modifications
8.2.1.3.2           Dynamic Membrane Systems
8.2.1.3.3           Cleaning Innovations
8.2.2      Advanced Oxidation Processes (AOP)
8.2.2.1   Photocatalytic Systems
8.2.2.1.1           Novel Catalysts
8.2.2.1.2           Reactor Designs
8.2.2.1.3           Process Integration
8.2.2.2   Electrochemical AOPs
8.2.2.2.1           Electrode Materials
8.2.2.2.2           Process Optimization
8.2.2.2.3           Scale-up Solutions
8.2.3      Biological Treatment Systems
8.2.3.1   Advanced Bioreactors
8.2.3.1.1           Membrane Bioreactors
8.2.3.1.2           Moving Bed Systems
8.2.3.1.3           Granular Sludge Technology
8.2.3.2   Microbial Solutions
8.2.3.2.1           Enhanced Microbial Consortia
8.2.3.3   Bioaugmentation
8.2.3.3.1           Synthetic Biology Applications
8.3          Air Quality Management
8.3.1       Advanced Emission Control
8.3.1.1    Particulate Matter Control
8.3.1.1.1           Advanced Filtration
8.3.1.1.2           Electrostatic Systems
8.3.1.1.3           Wet Scrubbers
8.3.1.2    Gas Treatment Systems
8.3.1.2.1           Catalytic Technologies
8.3.1.2.2           Plasma Treatment
8.3.1.2.3           Biological Gas Treatment
8.3.1.3    Smart Monitoring Systems
8.3.1.3.1           Real-time Sensors
8.3.1.3.2           Network Integration
8.3.1.3.3           Predictive Analytics
8.4          Soil and Groundwater Remediation
8.4.1       In-Situ Technologies
8.4.1.1    Chemical Treatment
8.4.1.1.1           Advanced Oxidation
8.4.1.1.2           Reduction Technologies
8.4.1.1.3           Stabilization Methods
8.4.1.2 Biological Remediation
8.4.1.2.1           Bioaugmentation
8.4.1.2.2           Phytoremediation
8.4.1.2.3           Mycoremediation
8.5          Digital Environmental Technologies
8.5.1       Environmental IoT
8.5.1.1    Sensor Networks
8.5.1.2    Data Integration
8.5.1.3    Analytics Platforms
8.5.2       AI and Machine Learning
8.5.2.1    Predictive Monitoring
8.5.2.2    Process Optimization
8.5.2.3    Risk Assessment
8.6          Emerging Technologies
8.6.1       Novel Materials
8.6.1.1    Nanomaterials
8.6.1.2    Bio-based Materials
8.6.1.3    Smart Materials
8.6.1.4    Plasma Systems
8.6.1.5    Supercritical Fluids
8.6.1.6    Electrochemical Processes
8.7          Company profiles (142 company profiles)

9           GREEN BUILDING TECHNOLOGIES
9.1        Market overview
9.1.1     Benefits of Sustainable Construction
9.1.2     Global Trends and Drivers
9.2        Global revenues
9.2.1     By materials type
9.2.2     By market
9.3        Types of sustainable construction materials
9.4        Established bio-based construction materials
9.5        Hemp-based Materials
9.5.1     Hemp Concrete (Hempcrete)
9.5.2     Hemp Fiberboard
9.5.3     Hemp Insulation
9.6        Mycelium-based Materials
9.6.1     Insulation
9.6.2     Structural Elements
9.6.3     Acoustic Panels
9.6.4     Decorative Elements
9.7        Sustainable Concrete and Cement Alternatives
9.7.1     Geopolymer Concrete
9.7.2     Recycled Aggregate Concrete
9.7.3     Lime-Based Materials
9.7.4     Self-healing concrete
9.7.4.1  Bioconcrete
9.7.4.2  Fiber concrete
9.7.5     Microalgae biocement
9.7.6     Carbon-negative concrete
9.7.7     Biomineral binders
9.7.8     Clinker substitutes
9.7.9     Other Alternative cementitious materials
9.8        Natural Fiber Composites
9.8.1     Types of Natural Fibers
9.8.2     Properties
9.8.3     Applications in Construction
9.9        Cellulose nanofibers
9.9.1     Sandwich composites
9.9.2     Cement additives
9.9.3     Pump primers
9.9.4     Insulation materials
9.9.5     Coatings and paints
9.9.6     3D printing materials
9.10      Sustainable Insulation Materials
9.10.1   Types of sustainable insulation materials
9.10.2    Aerogel Insulation
9.10.2.1            Silica aerogels
9.10.2.1.1        Properties
9.10.2.1.2        Thermal conductivity
9.10.2.1.3        Mechanical
9.10.2.1.4        Silica aerogel precursors
9.10.2.1.5        Products
9.10.2.1.5.1   Monoliths
9.10.2.1.5.2   Powder
9.10.2.1.5.3   Granules
9.10.2.1.5.4   Blankets
9.10.2.1.5.5   Aerogel boards
9.10.2.1.5.6   Aerogel renders
9.10.2.1.6        3D printing of aerogels
9.10.2.1.7        Silica aerogel from sustainable feedstocks
9.10.2.1.8        Silica composite aerogels
9.10.2.1.8.1   Organic crosslinkers
9.10.2.1.9        Cost of silica aerogels
9.10.2.1.10     Main players
9.10.2.2            Aerogel-like foam materials
9.10.2.2.1        Properties
9.10.2.2.2        Applications
9.10.2.3            Metal oxide aerogels
9.10.2.4            Organic aerogels
9.10.2.4.1        Polymer aerogels
9.10.2.5            Biobased and sustainable aerogels (bio-aerogels)
9.10.2.5.1        Cellulose aerogels
9.10.2.5.1.1   Cellulose nanofiber (CNF) aerogels
9.10.2.5.1.2   Cellulose nanocrystal aerogels
9.10.2.5.1.3   Bacterial nanocellulose aerogels
9.10.2.5.2        Lignin aerogels
9.10.2.5.3        Alginate aerogels
9.10.2.5.4        Starch aerogels
9.10.2.5.5        Chitosan aerogels
9.10.2.6            Carbon aerogels
9.10.2.6.1        Carbon nanotube aerogels
9.10.2.6.2        Graphene and graphite aerogels
9.10.2.7            Additive manufacturing (3D printing)
9.10.2.7.1        Carbon nitride
9.10.2.7.2        Gold
9.10.2.7.3        Cellulose
9.10.2.7.4        Graphene oxide
9.10.2.8            Hybrid aerogels
9.11     Carbon capture and utilization
9.11.1  Overview
9.11.2  Market structure
9.11.3  CCUS technologies in the cement industry
9.11.4  Products
9.11.4.1            Carbonated aggregates
9.11.4.2            Additives during mixing
9.11.4.3            Carbonates from natural minerals
9.11.4.4            Carbonates from waste
9.11.5  Concrete curing
9.11.6  Costs
9.11.7  Challenges
9.12     Alternative Fuels for Cement Production
9.12.1  Fuel switching for cement kilns
9.12.2  Kiln electrification
9.12.3  Solar power for cement production
9.13     Applications
9.13.1  Residential Buildings
9.13.2  Commercial and Office Buildings
9.13.3  Infrastructure
9.14     Company profiles  (165 company profiles)

10       REFERENCES
LIST OF TABLES
Table 1. Properties of Green steels.
Table 2. Global Decarbonization Targets and Policies related to Green Steel.
Table 3. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM).
Table 4. Hydrogen-based steelmaking technologies.
Table 5. Comparison of green steel production technologies.
Table 6. Advantages and disadvantages of each potential hydrogen carrier.
Table 7. CCUS in green steel production.
Table 8. Biochar in steel and metal.
Table 9. Hydrogen blast furnace schematic.
Table 10. Applications of microwave processing in green steelmaking.
Table 11. Applications of additive manufacturing (AM) in steelmaking.
Table 12.  Technology readiness level (TRL) for key green steel production technologies.
Table 13. Coatings and membranes in green steel production.
Table 14. Advantages and disadvantages of green steel.
Table 15. Markets and applications: green steel.
Table 16. Green Steel Plants - Current and Planned Production
Table 17. Industry developments and innovation in Green steel, 2022-2025.
Table 18. Summary of market growth drivers for Green steel.
Table 19. Market challenges in Green steel.
Table 20. Supply agreements between green steel producers and automakers.
Table 21. Applications of green steel in the automotive industry.
Table 22. Applications of green steel in the construction industry.
Table 23. Applications of green steel in the consumer appliances industry.
Table 24. Applications of green steel in machinery.
Table 25. Applications of green steel in the rail industry.
Table 26. Applications of green steel in the packaging industry.
Table 27. Applications of green steel in the electronics industry.
Table 28. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons).
Table 29. Low-Emissions Steel Production vs. Demand 2020-2035 (Million Metric Tons)
Table 30. Low-Emissions Steel Market Revenues 2020-2035.
Table 31. Demand for Low-Emissions Steel by End-Use Industry 2020-2035 (Million Metric Tons).
Table 32. Regional Demand for Low-Emissions Steel 2020-2035 (Million Metric Tons).
Table 33. Regional Demand for Low-Emissions Steel 2020-2035, NORTH AMERICA (Million Metric Tons)
Table 34. Regional Demand for Low-Emissions Steel 2020-2035, EUROPE (Million Metric Tons).
Table 35. Regional Demand for Low-Emissions Steel 2020-2035, CHINA (Million Metric Tons).
Table 36. Regional Demand for Low-Emissions Steel 2020-2035, INDIA (Million Metric Tons).
Table 37. Regional Demand for Low-Emissions Steel 2020-2035, ASIA-PACIFIC (excluding China) (Million Metric Tons).
Table 38. Regional Demand for Low-Emissions Steel 2020-2035, MIDDLE EAST & AFRICA (Million Metric Tons).
Table 39. Regional Demand for Low-Emissions Steel 2020-2035, SOUTH AMERICA (Million Metric Tons).
Table 40. Key players in Green steel, location and production methods.
Table 41. Hydrogen colour shades, Technology, cost, and CO2 emissions.
Table 42. Main applications of hydrogen.
Table 43. Overview of hydrogen production methods.
Table 44. National hydrogen initiatives.
Table 45. Market challenges in the hydrogen economy and production technologies.
Table 46. Green hydrogen industry developments 2020-2024.
Table 47. Market map for hydrogen technology and production.
Table 48. Industrial applications of hydrogen.
Table 49. Hydrogen energy markets and applications.
Table 50. Hydrogen production processes and stage of development.
Table 51. Estimated costs of clean hydrogen production.
Table 52. US Hydrogen Electrolyzer Capacities, current and planned, as of May 2023, by region.
Table 53. Green hydrogen application markets.
Table 54. Green hydrogen projects.
Table 55. Traditional Hydrogen Production.
Table 56. Hydrogen Production Processes.
Table 57. Comparison of hydrogen types.
Table 58.  Characteristics of typical water electrolysis technologies
Table 59. Advantages and disadvantages of water electrolysis technologies.
Table 60. Classifications of Alkaline Electrolyzers.
Table 61. Advantages & limitations of AWE.
Table 62. Key performance characteristics of AWE.
Table 63. Companies in the AWE market.
Table 64. Comparison of Commercial AEM Materials.
Table 65. Companies in the AMEL market.
Table 66. Companies in the PEMEL market.
Table 67. Companies in the SOEC market.
Table 68. Other types of electrolyzer technologies
Table 69. Electrochemical CO2 Reduction Technologies/
Table 70. Cost Comparison of CO2 Electrochemical Technologies.
Table 71. Companies developing other electrolyzer technologies.
Table 72. Electrolyzer Installations Forecast (GW), 2020-2040.
Table 73. Global market size for Electrolyzers, 2018-2035 (US$B).
Table 74. Market overview-hydrogen storage and transport.
Table 75. Summary of different methods of hydrogen transport.
Table 76. Market players in hydrogen storage and transport.
Table 77. Market overview hydrogen fuel cells-applications, market players and market challenges.
Table 78. Categories and examples of solid biofuel.
Table 79. Comparison of biofuels and e-fuels to fossil and electricity.
Table 80. Classification of biomass feedstock.
Table 81. Biorefinery feedstocks.
Table 82. Feedstock conversion pathways.
Table 83. Biodiesel production techniques.
Table 84. Advantages and disadvantages of biojet fuel
Table 85. Production pathways for bio-jet fuel.
Table 86. Applications of e-fuels, by type.
Table 87. Overview of e-fuels.
Table 88. Benefits of e-fuels.
Table 89. eFuel production facilities, current and planned.
Table 90. Market overview for hydrogen vehicles-applications, market players and market challenges.
Table 91. Blue ammonia projects.
Table 92. Ammonia fuel cell technologies.
Table 93. Market overview of green ammonia in marine fuel.
Table 94. Summary of marine alternative fuels.
Table 95. Estimated costs for different types of ammonia.
Table 96. Comparison of biogas, biomethane and natural gas.
Table 97. Hydrogen-based steelmaking technologies.
Table 98. Comparison of green steel production technologies.
Table 99. Advantages and disadvantages of each potential hydrogen carrier.
Table 100. History and Evolution of Carbon Credit Markets.
Table 101. Long-term marginal abatement costs of selected removal methods.
Table 102. Companies in Voluntary Carbon Markets.
Table 103. CDR investments and VC funding by company.
Table 104. CDR versus CCUS.
Table 105. Carbon dioxide removal capacity by technology (million metric tons of CO2/year), 2020-2045.
Table 106. Carbon Dioxide Removal Revenues by Technology (Billion US$).
Table 107. DACCS Carbon Removal Capacity Forecast (Million Metric Tons CO2/Year).
Table 108. DACCS Carbon Credit Revenue Forecast (Million US$).
Table 109. BECCS Carbon Removal Capacity Forecast (Million Metric Tons CO2/Year).
Table 110. Biochar and Biomass Burial Carbon Removal Forecast (Million Metric Tons CO2/Year).
Table 111. BiCRS Carbon Credit Revenue Forecast (Million US$).
Table 112. Mineralization Carbon Removal Forecast (Million Metric Tons CO2/Year).
Table 113. Mineralization Carbon Credit Revenue Forecast (Million US$).
Table 114. Ocean-based Carbon Removal Forecast (Million Metric Tons CO2/Year).
Table 115. Ocean-based Carbon Credit Revenue Forecast (Million US$).
Table 116. Global purchases of CO2 removal (tonnes) 2019-2024.
Table 117. Main CDR methods.
Table 118. Technology Readiness Level (TRL) for Carbon Dioxide Removal Methods.
Table 119. Carbon Dioxide Removal Technology Benchmarking.
Table 120. Novel CDR Methods.
Table 121. Market drivers for carbon dioxide removal (CDR).
Table 122. CDR Value Chain.
Table 123. Engineered Carbon Dioxide Removal Value Chain
Table 124. Carbon pricing and carbon markets
Table 125. Carbon Removal vs Emission Reduction Offsets.
Table 126. Carbon Crediting Programs.
Table 127. Voluntary Carbon Credits Key Market Players and Projects.
Table 128. Compliance Carbon Credits Key Market Players and Projects.
Table 129. Comparison of Voluntary and Compliance Carbon Credits.
Table 130. Durable Carbon Removal Buyers.
Table 131. Prices of CDR Credits.
Table 132. Major Corporate Carbon Credit Commitments.
Table 133. Key Carbon Market Regulations and Support Mechanisms.
Table 134. Carbon credit prices by company and technology.
Table 135. Carbon Credit Exchanges and Trading Platforms.
Table 136. OTC Carbon Market Characteristics.
Table 137. Challenges and Risks.
Table 138. TRL of Biomass Conversion Processes and Products by Feedstock.
Table 139. BiCRS feedstocks.
Table 140. BiCRS conversion pathways.
Table 141. BiCRS Technological Challenges.
Table 142. CO2 capture technologies for BECCS.
Table 143. Existing and planned capacity for sequestration of biogenic carbon.
Table 144. Existing facilities with capture and/or geologic sequestration of biogenic CO2.
Table 145.Carbon Market 2024 and Forecast to 2035
Table 146. BECCS Challenges.
Table 147. Summary of key properties of biochar.
Table 148. Biochar physicochemical and morphological properties
Table 149. Biochar feedstocks-source, carbon content, and characteristics.
Table 150. Biochar production technologies, description, advantages and disadvantages.
Table 151. Comparison of slow and fast pyrolysis for biomass.
Table 152. Comparison of thermochemical processes for biochar production.
Table 153. Biochar production equipment manufacturers.
Table 154. Competitive materials and technologies that can also earn carbon credits.
Table 155. Bio-oil-based CDR pros and cons.
Table 156. Advantages and disadvantages of DAC.
Table 157. DAC vs Point-Source Carbon Capture.
Table 158. Capture Cost of DAC.
Table 159. Component Specific Capture Cost Contributions for DACCS.
Table 160. CO2 Capture/Separation Mechanisms in DAC.
Table 161. Emerging solid sorbent materials for DAC.
Table 162.Solid Sorbent vs Liquid Solvent-based DAC
Table 163. Companies developing airflow equipment integration with DAC.
Table 164. Companies developing Passive Direct Air Capture (PDAC) technologies.
Table 165. Companies developing regeneration methods for DAC technologies.
Table 166. DAC technology developers and production.
Table 167. DAC projects in development.
Table 168. Markets for DAC.
Table 169. Costs summary for DAC.
Table 170. Cost estimates of DAC.
Table 171. Challenges for DAC technology.
Table 172. TRLs of Direct Air Capture Companies.
Table 173. DACCS Carbon Credit Sales by Company.
Table 174. DAC companies and technologies.
Table 175. Ex Situ Mineralization CDR Methods.
Table 176. Source Materials for Ex Situ Mineralization.
Table 177. Companies in CO2-derived Concrete.
Table 178. Enhanced Weathering Applications.
Table 179. Enhanced Weathering Materials and Processes.
Table 180. Enhanced Weathering Companies
Table 181. Trends and Opportunities in Enhanced Weathering.
Table 182. Challenges and Risks in Enhanced Weathering.
Table 183. Cost analysis of enhanced weathering.
Table 184. Nature-based CDR approaches.
Table 185. Comparison of A/R and BECCS.
Table 186. Forest Carbon Removal Projects.
Table 187. Companies in Robotics in A/R.
Table 188. Trends and Opportunities in Afforestation/Reforestation.
Table 189.Challenges and Risks in Afforestation/Reforestation.
Table 190. Soil Carbon Sequestration Methods.
Table 191. Soil Sampling and Analysis Methods.
Table 192. Remote Sensing and Modeling Techniques.
Table 193. Companies Using Microbial Inoculation for Soil Carbon Sequestration.
Table 194. Marketplaces for SCS-based CDR Credits.
Table 195. Challenges and Risks in Soil Carbon Sequestration.
Table 196. Ocean-based CDR methods.
Table 197. Technology Readiness Level (TRL) Chart for Ocean-based CDR.
Table 198. Benchmarking of Ocean-based CDR Methods.
Table 199. Ocean-based CDR: Biotic Methods.
Table 200. Market Players in Ocean-based CDR.
Table 201. Levelized Cost of Heat by Technology.
Table 202. Resistance Heating Applications by Temperature Range.
Table 203. Induction Heating Efficiency by Frequency.
Table 204. Microwave Heating Applications in Industry.
Table 205. Plasma Technology Applications.
Table 206. Industrial Heat Pump Specifications.
Table 207. Emerging Heat Pump Technologies Comparison.
Table 208. Biomass Feedstock Characteristics.
Table 209. Biomass Combustion Technologies Comparison.
Table 210. Emerging Biomass Technology Assessment.
Table 211.Solar Thermal Industrial Applications.
Table 212. Geothermal Technology Applications.
Table 213. Heat Storage Technology Comparison.
Table 214.Digital Technology Implementation Cases.
Table 215.Grid Integration Requirements.
Table 216. Storage Technology Comparison.
Table 217. Renewable Integration Schemes.
Table 218. Resistance Heating Applications.
Table 219. Induction Heating Efficiency Analysis.
Table 220. Dielectric Heating Technology Comparison.
Table 221. Plasma Technology Applications.
Table 222. Electrolysis Technology Comparison.
Table 223.  Reactor Technology Assessment.
Table 224. Membrane Technology Applications.
Table 225. Motor Technology Comparison.
Table 226. Novel Heating Technology Assessment.
Table 227. Spectroscopic Technology Comparison.
Table 228. Robotics and Automation.
Table 229. Advanced Robotics Applications.
Table 230. Summary of non-catalytic pyrolysis technologies.
Table 231. Summary of catalytic pyrolysis technologies.
Table 232. Summary of pyrolysis technique under different operating conditions.
Table 233. Biomass materials and their bio-oil yield.
Table 234. Biofuel production cost from the biomass pyrolysis process.
Table 235. Pyrolysis companies and plant capacities, current and planned.
Table 236. Summary of gasification technologies.
Table 237. Advanced recycling (Gasification) companies.
Table 238. Summary of dissolution technologies.
Table 239. Advanced recycling (Dissolution) companies
Table 240. Depolymerisation processes for PET, PU, PC and PA, products and yields.
Table 241. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.
Table 242. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.
Table 243. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.
Table 244. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.
Table 245. Summary of aminolysis technologies.
Table 246. Advanced recycling (Depolymerisation) companies and capacities (current and planned).
Table 247. Overview of hydrothermal cracking for advanced chemical recycling.
Table 248. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.
Table 249. Overview of microwave-assisted pyrolysis for advanced chemical recycling.
Table 250. Overview of plasma pyrolysis for advanced chemical recycling.
Table 251. Overview of plasma gasification for advanced chemical recycling.
Table 252. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.
Table 253. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.
Table 254. Recycled carbon fiber producers, technology and capacity.
Table 255.  Current thermoset recycling routes.
Table 256. Companies developing advanced thermoset recycing routes.
Table 257. Energy Efficiency Comparison.
Table 258. Quality of Output Comparison.
Table 259. Cost Analysis of advanced plastic recycling versus traditional recycling methods.
Table 260. Carbon Footprint Analysis.
Table 261. Energy Consumption Assessment.
Table 262. Primary global suppliers of critical raw materials.
Table 263. Global critical raw materials recovery market by material types (2025-2040), by ktonnes.
Table 264. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD).
Table 265. Global critical raw materials recovery market by recovery source (2025-2040), in ktonnes.
Table 266. Global critical raw materials recovery market by recovery source (2025-2040), by value (Billions USD).
Table 267. Markets and applications: copper.
Table 268. Technologies and Techniques for Copper Extraction and Recovery.
Table 269. Markets and applications: nickel.
Table 270. Technologies and Techniques for Nickel Extraction and Recovery.
Table 271. Markets and applications: cobalt.
Table 272. Technologies and Techniques for Cobalt Extraction and Recovery.
Table 273. Markets and applications: rare earth elements.
Table 274. Technologies and Techniques for Rare Earth Elements Extraction and Recovery.
Table 275. Markets and applications: lithium.
Table 276. Technologies and Techniques for Lithium Extraction and Recovery.
Table 277. Markets and applications: gold.
Table 278. Technologies and Techniques for Gold Extraction and Recovery.
Table 279. Markets and applications: uranium.
Table 280. Technologies and Techniques for Uranium Extraction and Recovery.
Table 281. Markets and applications: zinc.
Table 282. Zinc Extraction and Recovery Technologies.
Table 283. Markets and applications: manganese.
Table 284. Manganese Extraction and Recovery Technologies.
Table 285. Markets and applications: tantalum.
Table 286. Tantalum Extraction and Recovery Technologies.
Table 287. Markets and applications: niobium.
Table 288. Niobium Extraction and Recovery Technologies.
Table 289. Markets and applications: indium.
Table 290. Indium Extraction and Recovery Technologies.
Table 291. Markets and applications: gallium.
Table 292. Gallium Extraction and Recovery Technologies.
Table 293. Markets and applications: germanium.
Table 294. Germanium Extraction and Recovery Technologies.
Table 295. Markets and applications: antimony.
Table 296. Antimony Extraction and Recovery Technologies.
Table 297. Markets and applications: scandium.
Table 298. Scandium Extraction and Recovery Technologies.
Table 299. Graphite Markets and Applications.
Table 300. Graphite Extraction and Recovery Techniques and Technologies.
Table 301. Comparison of Primary vs Secondary Production for Key Materials.
Table 302. Environmental Impact Comparison: Primary vs Secondary Production.
Table 303. Technologies for critical material recovery from secondary sources.
Table 304. Technologies for critical raw material recovery from secondary sources.
Table 305. Critical raw material extraction technologies.
Table 306. Pyrometallurgical extraction methods.
Table 307. Bioleaching processes and their applicability to critical materials.
Table 308. Comparative analysis of metal recovery technologies.
Table 309. Technology readiness of critical material recovery technologies by secondary material sources.
Table 310. Global recovered critical raw electronics material, 2025-2040 (ktonnes).
Table 311. Global recovered critical raw electronics material market, 2025-2040 (billions USD).
Table 312. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes).
Table 313. Membrane Performance Comparison.
Table 314. Electrochemical AOP Performance.
Table 315. Microbial Treatment Efficiency.
Table 316. Gas Treatment System Performance.
Table 317. In-Situ Treatment Comparison.
Table 318.Biological Treatment Processes.
Table 319. Global trends and drivers in sustainable construction materials.
Table 320. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).
Table 321. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).
Table 322. Established bio-based construction materials.
Table 323. Types of self-healing concrete.
Table 324. General properties and value of aerogels.
Table 325. Key properties of silica aerogels.
Table 326. Chemical precursors used to synthesize silica aerogels.
Table 327. Commercially available aerogel-enhanced blankets.
Table 328. Main manufacturers of silica aerogels and product offerings.
Table 329. Typical structural properties of metal oxide aerogels.
Table 330. Polymer aerogels companies.
Table 331. Types of biobased aerogels.
Table 332. Carbon aerogel companies.
Table 333. Conversion pathway for CO2-derived building materials.
Table 334. Carbon capture technologies and projects in the cement sector
Table 335. Carbonation of recycled concrete companies.
Table 336. Current and projected costs for some key CO2 utilization applications in the construction industry.
Table 337. Market challenges for CO2 utilization in construction materials.

LIST OF FIGURES
Figure 1. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes.
Figure 2. Transition to hydrogen-based production.
Figure 3. CO2 emissions from steelmaking (tCO2/ton crude steel).
Figure 4. CO2 emissions of different process routes for liquid steel.
Figure 5. Hydrogen Direct Reduced Iron (DRI) process.
Figure 6. Molten oxide electrolysis process.
Figure 7. Steelmaking with CCS.
Figure 8. Flash ironmaking process.
Figure 9. Hydrogen Plasma Iron Ore Reduction process.
Figure 10. Green steel market map.
Figure 11. SWOT analysis: Green steel.
Figure 12. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons).
Figure 13. ArcelorMittal decarbonization strategy.
Figure 14. HYBRIT process schematic.
Figure 15. Schematic of HyREX technology.
Figure 16. EAF Quantum.
Figure 17. Hydrogen value chain.
Figure 18. Current Annual H2 Production.
Figure 19. Principle of a PEM electrolyser.
Figure 20. Power-to-gas concept.
Figure 21. Schematic of a fuel cell stack.
Figure 22. High pressure electrolyser - 1 MW.
Figure 23. Global hydrogen demand forecast.
Figure 24. U.S. Hydrogen Production by Producer Type.
Figure 25. Segmentation of regional hydrogen production capacities in the US.
Figure 26. Current of planned installations of Electrolyzers over 1MW in the US.
Figure 27. SWOT analysis: green hydrogen.
Figure 28. Types of electrolysis technologies.
Figure 29. Typical Balance of Plant including Gas processing.
Figure 30. Schematic of alkaline water electrolysis working principle.
Figure 31. Alkaline water electrolyzer.
Figure 32. Typical system design and balance of plant for an AEM electrolyser.
Figure 33. Schematic of PEM water electrolysis working principle.
Figure 34. Typical system design and balance of plant for a PEM electrolyser.
Figure 35. Schematic of solid oxide water electrolysis working principle.
Figure 36. Typical system design and balance of plant for a solid oxide electrolyser.
Figure 37. Estimated annual electrolyser manufacturing capacity, by manufacture's headquarters (a) and by type and origin (b), 2021-2024.
Figure 38. Electrolyzer Installations Forecast (GW), 2020-2040.
Figure 39. Global market size for Electrolyzers, 2018-2035 (US$B)
Figure 40. Process steps in the production of electrofuels.
Figure 41. Mapping storage technologies according to performance characteristics.
Figure 42. Production process for green hydrogen.
Figure 43. E-liquids production routes.
Figure 44. Fischer-Tropsch liquid e-fuel products.
Figure 45. Resources required for liquid e-fuel production.
Figure 46. Levelized cost and fuel-switching CO2 prices of e-fuels.
Figure 47. Cost breakdown for e-fuels.
Figure 48. Hydrogen fuel cell powered EV.
Figure 49. Green ammonia production and use.
Figure 50. Classification and process technology according to carbon emission in ammonia production.
Figure 51. Schematic of the Haber Bosch ammonia synthesis reaction.
Figure 52. Schematic of hydrogen production via steam methane reformation.
Figure 53. Estimated production cost of green ammonia.
Figure 54. Renewable Methanol Production Processes from Different Feedstocks.
Figure 55. Production of biomethane through anaerobic digestion and upgrading.
Figure 56. Production of biomethane through biomass gasification and methanation.
Figure 57. Production of biomethane through the Power to methane process.
Figure 58. Transition to hydrogen-based production.
Figure 59. CO2 emissions from steelmaking (tCO2/ton crude steel).
Figure 60. Hydrogen Direct Reduced Iron (DRI) process.
Figure 61. Three Gorges Hydrogen Boat No. 1.
Figure 62. PESA hydrogen-powered shunting locomotive.
Figure 63. Symbiotic™ technology process.
Figure 64. Alchemr AEM electrolyzer cell.
Figure 65. Domsjö process.
Figure 66. EL 2.1 AEM Electrolyser.
Figure 67. Enapter - Anion Exchange Membrane (AEM) Water Electrolysis.
Figure 68. Direct MCH® process.
Figure 69. FuelPositive system.
Figure 70. Using electricity from solar power to produce green hydrogen.
Figure 71. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process.
Figure 72. Hystar PEM electrolyser.
Figure 73. OCOchem’s Carbon Flux Electrolyzer.
Figure 74.  CO2 hydrogenation to jet fuel range hydrocarbons process.
Figure 75. The Plagazi ® process.
Figure 76. Sunfire process for Blue Crude production.
Figure 77. O12 Reactor.
Figure 78. Sunglasses with lenses made from CO2-derived materials.
Figure 79. CO2 made car part.
Figure 80. Carbon emissions by sector.
Figure 81. Overview of CCUS market
Figure 82. Pathways for CO2 use.
Figure 83. Cost estimates for long-distance CO2 transport.
Figure 84. Carbon Dioxide Removal Market Map.
Figure 85. Carbon dioxide removal capacity by technology (million metric tons of CO2/year), 2020-2045.
Figure 86. Carbon dioxide removal revenues by technology (billion US$), 2020-2045.
Figure 87. DACCS Carbon Removal Capacity Forecast (Million Metric Tons CO2/Year).
Figure 88. DACCS Carbon Credit Revenue Forecast (Million US$).
Figure 89. BECCS Carbon Removal Capacity Forecast (Million Metric Tons CO2/Year).
Figure 90. Biochar and Biomass Burial Carbon Removal Forecast (Million Metric Tons CO2/Year).
Figure 91. BiCRS Carbon Credit Revenue Forecast (Million US$).
Figure 92. Mineralization Carbon Removal Forecast (Million Metric Tons CO2/Year).
Figure 93. Mineralization Carbon Credit Revenue Forecast (Million US$).
Figure 94. Ocean-based Carbon Removal Forecast (Million Metric Tons CO2/Year).
Figure 95. Ocean-based Carbon Credit Revenue Forecast (Million US$).
Figure 96. BiCRS Value Chain.
Figure 97. Bioenergy with carbon capture and storage (BECCS) process.
Figure 98. Schematic of biochar production.
Figure 99. Biochars from different sources, and by pyrolyzation at different temperatures.
Figure 100. Compressed biochar.
Figure 101. Biochar production diagram.
Figure 102. Pyrolysis process and by-products in agriculture.
Figure 103. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.
Figure 104. Global CO2 capture from biomass and DAC in the Net Zero Scenario.
Figure 105.  DAC technologies.
Figure 106. Schematic of Climeworks DAC system.
Figure 107. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.
Figure 108.  Flow diagram for solid sorbent DAC.
Figure 109. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.
Figure 110. Global capacity of direct air capture facilities.
Figure 111. Global map of DAC and CCS plants.
Figure 112. Schematic of costs of DAC technologies.
Figure 113. Operating costs of generic liquid and solid-based DAC systems.
Figure 114. SWOT analysis: DACCS.
Figure 115. Capture of carbon dioxide from the atmosphere using bricks of calcium hydroxide.
Figure 116. Carbon capture using mineral carbonation.
Figure 117. SWOT analysis: enhanced weathering.
Figure 118. SWOT analysis: afforestation/reforestation.
Figure 119. Soil Carbon Sequestration Value Chain.
Figure 120. SWOT analysis: SCS.
Figure 121. SWOT analysis: Ocean-based CDR.
Figure 122. Schematic of carbon capture solar project.
Figure 123. Capchar prototype pyrolysis kiln.
Figure 124. Carbon Blade system.
Figure 125. CarbonCure Technology.
Figure 126. Direct Air Capture Process.
Figure 127. Orca facility.
Figure 128. Carbon Capture balloon.
Figure 129. Holy Grail DAC system.
Figure 130. Infinitree swing method.
Figure 131. Mosaic Materials MOFs.
Figure 132. Neustark modular plant.
Figure 133. OCOchem’s Carbon Flux Electrolyzer.
Figure 134. RepAir technology.
Figure 135. Soletair Power unit.
Figure 136. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).
Figure 137. Takavator.
Figure 138. Global Industrial Heat Consumption by Sector.
Figure 139. Carbon Emissions from Industrial Heat, By Region.
Figure 140. Technology Readiness Levels by Solution.
Figure 141. Marginal Abatement Cost Curve.
Figure 142. AI-Enabled Sorting Systems.
Figure 143. Schematic layout of a pyrolysis plant.
Figure 144. Waste plastic production pathways to (A) diesel and (B) gasoline
Figure 145. Schematic for Pyrolysis of Scrap Tires.
Figure 146. Used tires conversion process.
Figure 147. Total syngas market by product in MM Nm³/h of Syngas, 2021.
Figure 148. Overview of biogas utilization.
Figure 149. Biogas and biomethane pathways.
Figure 150. Products obtained through the different solvolysis pathways of PET, PU, and PA.
Figure 151. SWOT analysis-Hydrolysis for advanced chemical recycling.
Figure 152. SWOT analysis-Enzymolysis for advanced chemical recycling.
Figure 153. SWOT analysis-Methanolysis for advanced chemical recycling.
Figure 154. SWOT analysis-Glycolysis for advanced chemical recycling.
Figure 155. SWOT analysis-Aminolysis for advanced chemical recycling.
Figure 156. Global critical raw materials recovery market by material types (2025-2040), by ktonnes.
Figure 157. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD).
Figure 158. Global critical raw materials recovery market by recovery source (2025-2040), by ktonnes.
Figure 159. Global critical raw materials recovery market by recovery source (2025-2040), by value.
Figure 160. Copper demand outlook.
Figure 161. Global nickel demand outlook.
Figure 162. Global cobalt demand outlook.
Figure 163. Global lithium demand outlook.
Figure 164. Global graphite demand outlook.
Figure 165.  Solvent extraction (SX) in hydrometallurgy.
Figure 166. SWOT analysis: hydrometallurgical extraction.
Figure 167. SWOT analysis: pyrometallurgical extraction of critical materials.
Figure 168. SWOT analysis: biometallurgy for critical material extraction.
Figure 169. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction.
Figure 170. SWOT analysis: electrochemical leaching for critical material extraction.
Figure 171. SWOT analysis: supercritical fluid extraction technology.
Figure 172. SWOT analysis: solvent extraction recovery technology.
Figure 173. SWOT analysis: ion exchange resin recovery technology.
Figure 174. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery.
Figure 175. SWOT analysis: precipitation for critical material recovery.
Figure 176. SWOT analysis: biosorption for critical material recovery.
Figure 177. SWOT analysis: electrowinning for critical material recovery.
Figure 178. SWOT analysis: direct critical material recovery technology.
Figure 179. Global Li-ion battery recycling market, 2025-2040 (chemistry).
Figure 180. Global  recovered critical raw electronics materials market, 2025-2040 (ktonnes)
Figure 181. Global  recovered critical raw electronics material market, 2025-2040 (Billion USD).
Figure 182. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes).
Figure 183. NewCycling process.
Figure 184. ChemCyclingTM prototypes.
Figure 185. ChemCycling circle by BASF.
Figure 186. Recycled carbon fibers obtained through the R3FIBER process.
Figure 187. Cassandra Oil  process.
Figure 188. CuRe Technology process.
Figure 189. MoReTec.
Figure 190. Chemical decomposition process of polyurethane foam.
Figure 191. OMV ReOil process.
Figure 192. Schematic Process of Plastic Energy’s TAC Chemical Recycling.
Figure 193. Easy-tear film material from recycled material.
Figure 194. Polyester fabric made from recycled monomers.
Figure 195. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).
Figure 196. Teijin Frontier Co., Ltd. Depolymerisation process.
Figure 197. The Velocys process.
Figure 198. The Proesa® Process.
Figure 199. Worn Again products.
Figure 200. Bioreactor Configurations.
Figure 201. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).
Figure 202. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).
Figure 203. Luum Temple, constructed from Bamboo.
Figure 204. Typical structure of mycelium-based foam.
Figure 205. Commercial mycelium composite construction materials.
Figure 206. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).
Figure 207. Self-healing bacteria crack filler for concrete.
Figure 208. Self-healing bio concrete.
Figure 209. Microalgae based biocement masonry bloc.
Figure 210. Classification of aerogels.
Figure 211. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.
Figure 212. Monolithic aerogel.
Figure 213. Aerogel granules.
Figure 214. Internal aerogel granule applications.
Figure 215. 3D printed aerogels.
Figure 216. Lignin-based aerogels.
Figure 217. Fabrication routes for starch-based aerogels.
Figure 218. Graphene aerogel.
Figure 219. Schematic of CCUS in cement sector.
Figure 220. Carbon8 Systems’ ACT process.
Figure 221. CO2 utilization in the Carbon Cure process.
Figure 222. Aizawa self-healing concrete.
Figure 223. ArcelorMittal decarbonization strategy.
Figure 224. Thermal Conductivity Performance of ArmaGel HT.
Figure 225. SLENTEX® roll (piece).
Figure 226. Biozeroc Biocement.
Figure 227. Carbon Re’s DeltaZero dashboard.
Figure 228. Neustark modular plant.
Figure 229. HIP AERO paint.
Figure 230. Sunthru Aerogel pane.
Figure 231. Quartzene®.
Figure 232. Schematic of HyREX technology.
Figure 233. EAF Quantum.
Figure 234. CNF insulation flat plates

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • 1414 Degrees
  • A.Virtual
  • Aclarity
  • Adaptavate
  • Advanced Ionics
  • Allozymes
  • Adsorbi
  • Aerogel Core
  • Allonia
  • AGITEC International
  • Air Liquide
  • Air Products
  • Antora Energy
  • Aker Carbon Capture
  • Alchemy
  • Algoma Steel
  • Alison Hi-Tech
  • Alstom
  • Ambrell
  • Ambri
  • Andritz
  • Antora Energy
  • Aperam BioEnergia
  • ArcelorMittal
  • Ardent
  • Armacell International
  • Asahi Kasei
  • Autarkize
  • Augury
  • AutoGrid
  • BASF
  • Basilisk
  • Battery Pollution Technologies
  • Beltran Technologies
  • Betolar
  • Bio Fab NZ
  • Biohm
  • Biomason
  • BioZeroc
  • Blastr Green Steel
  • Blue Planet Systems
  • Blueshift Materials
  • Boreal Laser
  • Boston Metal
  • BP
  • Braincube
  • Brimstone
  • C-Zero
  • Cabot Corporation
  • Calgon Carbon
  • Cambridge Carbon Capture
  • Cambridge Electric Cement
  • Canvass Analytics
  • Carbogenics
  • CarbiCrete
  • Carbonaide
  • Carbon Clean
  • Carbon Engineering
  • CarbonCure
  • Carbon8 Systems
  • Carbon Ridge CEIA Power
  • Charbone Hydrogen
  • Chevron
  • China Baowu Steel Group
  • Chromalox
  • Chumpower
  • Clariant
  • Climeworks
  • Cummins
  • Coagtech
  • De Nora
  • Despatch Industries
  • Dow Chemical
  • Doosan Heavy Industries
  • Eaton
  • Electra Steel
  • Electric Hydrogen
  • Enapter
  • Electrified Thermal Solutions
  • Epoch Biodesign
  • Evoqua
  • Fero Labs
  • Fluor
  • FLSmidth
  • Fortescue
  • GE
  • GH Induction
  • Gradiant
  • Green Hydrogen Systems
  • HPNOw
  • H2 Green Steel
  • H2Pro
  • HeatXcel
  • Heliogen
  • Heatrix GmbH
  • Honeywell
  • Hysata
  • IDOM
  • ION Clean Energy Ionomr Innovations
  • ITM Power
  • JFE Steel
  • Johnson Controls
  • Johnson Matthey
  • Kaneka
  • Kawasaki Heavy Industries
  • Kobe Steel
  • Kurita Water
  • Linde
  • LyondellBasell
  • MAN Energy
  • McPhy Energy
  • Metso Outotec
  • Microwave Chemical
  • Mitsubishi Heavy Industries
  • Modultherm
  • Nanjing Iron & Steel
  • Nel Hydrogen
  • Neustark
  • Nippon Steel
  • Novobiom
  • Ohmium
  • Ovivo
  • Pall Corporation
  • Phoenix Contact
  • Plenesys
  • Pluvion
  • Puraffinity
  • Promethean Particles
  • Pyrolyze
  • Quantafuel
  • Regal Rexnord
  • Repsol
  • Rondo Energy
  • Sabic
  • Salzgitter AG
  • Samsung Engineering
  • Sany Heavy Industry
  • Schneider Electric
  • Shell
  • Siemens
  • Siemens Energy
  • Smart Ops
  • SSAB
  • Starfire Industries
  • Statkraft
  • Stamicarbon
  • Stiesdal
  • Stoffu
  • Sublime Systems
  • Sunfire
  • Sunthru
  • Svante
  • Sympower
  • Tata Steel
  • Tenova
  • ThermCell
  • ThermFLEX
  • Thermon
  • ThyssenKrupp
  • Toshiba
  • Total Energies
  • Toyo Engineering
  • Trane Technologies
  • Umicore
  • UBreathe
  • Valmet
  • Vattenfall
  • Veolia
  • Vestas
  • Verdagy
  • Wärtsilä
  • Waste Management
  • Watlow
  • WEG
  • WesTech Engineering
  • Wood
  • Wärtsilä
  • Xcel Energy
  • Xylem
  • Yokogawa
  • Yosemite Clean Energy
  • ZeaChem
  • ZeePure
  • ZEG Power
  • Zenyatta

Methodology

Loading
LOADING...