+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Photonics, Volume 3. Photonics Technology and Instrumentation. Edition No. 1. A Wiley-Science Wise Co-Publication

  • Book

  • 544 Pages
  • April 2015
  • John Wiley and Sons Ltd
  • ID: 2616966

Discusses the basic physical principles underlying the technology instrumentation of photonics

This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion

  • Comprehensive and accessible coverage of the whole of modern photonics
  • Emphasizes processes and applications that specifically exploit photon attributes of light
  • Deals with the rapidly advancing area of modern optics
  • Chapters are written by top scientists in their field

Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

Table of Contents

List of Contributors ix

Preface xi

1 Solid-State Lighting: Toward Smart and Ultraefficient Materials, Devices, Lamps, and Systems 1
M. H. Crawford, J. J. Wierer, A. J. Fischer, G. T. Wang, D. D. Koleske, G. S. Subramania, M. E. Coltrin, R. F. Karlicek, Jr., and J. Y. Tsao

1.1 A Brief History of SSL, 1

1.2 Beyond the State-of-the-Art: Smart and Ultraefficient SSL, 10

1.3 Ultraefficient SSL Lighting: Toward Multicolor Semiconductor Electroluminescence, 21

1.4 Smart Solid-State Lighting: Toward Control of Flux and Spectra in Time and Space, 42

1.5 Summary and Conclusions, 46

Acknowledgments, 46

References, 47

2 Integrated Optics Using High Contrast Gratings 57
Connie Chang-Hasnain and Weijian Yang

2.1 Introduction, 57

2.2 Physics of Near-Wavelength Grating, 58

2.3 Applications of HCGs, 77

2.4 Summary, 98

Acknowledgments, 98

References, 98

3 Plasmonic Crystals: Controlling Light with Periodically Structured Metal Films 107
Wayne Dickson, Gregory A. Wurtz and Anatoly V. Zayats

3.1 Introduction, 107

3.2 Surface Plasmon Polaritons, 110

3.3 Basics of Surface Plasmon Polaritonic Crystals, 113

3.4 Polarization and Wavelength Management with Plasmonic Crystals, 120

3.5 Chirped Plasmonic Crystals: Broadband and Broadangle SPP Antennas Based on Plasmonic Crystals, 138

3.6 Active Control of Light with Plasmonic Crystals, 146

3.7 Conclusion, 160

Acknowledgments, 160

References, 160

4 Optical Holography 169
Raymond K. Kostuk

4.1 Introduction, 169

4.2 Basic Concepts in Holography, 169

4.3 Hologram Analysis, 172

4.4 Hologram Geometries, 182

4.5 Holographic Recording Materials, 183

4.6 Digital Holography, 188

4.7 Computer Generated Holography, 193

4.8 Holographic Applications, 198

References, 208

5 Cloaking and Transformation Optics 215
Martin W. McCall

5.1 Introduction, 215

5.2 Theoretical Underpinning, 217

5.3 The Carpet Cloak, 226

5.4 Conformal Cloaking, 232

5.5 Spacetime Cloaking, 234

5.6 Conclusion and Outlook: Beyond Optics, 243

Appendix 5.A: Technicalities, 244

Appendix 5.B: Vectors and Tensors in Flat Spacetime, 245

Appendix 5.C: Maxwell’s Equations and Constitutive Relations in Covariant Form, 247

References, 251

6 Photonic Data Buffers 253
S. J. B. Yoo

6.1 Introduction, 253

6.2 Applications of Photonic Buffers, 254

6.3 Limitations of Electronics, 258

6.4 Photonic Buffer Technologies, 260

6.5 Integration Efforts, 278

6.6 Summary, 278

References, 278

7 Optical Forces, Trapping and Manipulation 287
Halina Rubinsztein-Dunlop, Alexander B. Stilgoe, Darryl Preece, Ann Bui, and Timo A. Nieminen

7.1 Introduction, 287

7.2 Theory of Optical Forces, 293

7.3 Theory of Optical Torques, 301

7.4 Measurement of Forces and Torques, 308

7.5 Calculation of Forces and Torques, 318

7.6 Conclusion, 329

References, 329

8 Optofluidics 341
Lin Pang, H. Matthew Chen, Lindsay M. Freeman, and Yeshaiahu Fainman

8.1 Introduction, 341

8.2 Photonics with Fluid Manipulation, 342

8.3 Fluidic Sensing, 350

8.4 Fluidic Enabled Imaging, 353

8.5 Fluid Assisted Nanopatterning, 358

8.6 Conclusions and Outlook, 361

Acknowledgments, 362

References, 362

9 Nanoplasmonic Sensing for Nanomaterials Science 369
Elin M. Larsson-Langhammer, Svetlana Syrenova, and Christoph Langhammer

9.1 Introduction, 369

9.2 Nanoplasmonic Sensing and Readout, 370

9.3 Inherent Limitations of Nanoplasmonic Sensors, 373

9.4 Direct Nanoplasmonic Sensing, 373

9.5 Indirect Nanoplasmonic Sensing, 374

9.6 Overview on Different Examples, 376

9.7 Discussion and Outlook, 396

References, 397

10 Laser Fabrication and Nanostructuring 403
Cemal Esen and Andreas Ostendorf

10.1 Introduction, 403

10.2 Laser Systems for Nanostructuring, 404

10.3 Surface Structuring by Laser Ablation, 409

10.4 Generation of thin Films by Laser Ablation in Vacuum, 416

10.5 Generation of Nanoparticles by Laser Ablation in Liquids, 419

10.6 Laser Induced Volume Structures, 423

10.7 Direct Writing of Polymer Components via Two-Photon Polymerization, 426

10.8 Conclusion, 431

References, 432

11 Free Electron Lasers for Photonics Technology by Wiley 445
George R. Neil and Gwyn P. Williams

11.1 Introduction, 445

11.2 Physical Principles, 446

11.3 Worldwide FEL Status, 462

11.4 Applications, 466

11.5 Summary and Conclusion, 471

References, 471

Index 477

Authors

David L. Andrews University of Maryland, USA.