The rapid growth of AI technology has put unprecedented demands on networks and data centers. Silicon photonics and photonic integrated circuits offer the most advanced networking solution to this problem. AI "factories" are a new class of data centers with extreme scale, and networking infrastructure must be reinvented to keep pace. The US-based artificial intelligence (AI) computing multinational NVIDIA recently announced its plan to leverage silicon photonics and co-packaged optics (CPO) to connect millions of GPUs in these AI factories.
Silicon photonics and photonic integrated circuits (PICs) represent a transformative technology at the intersection of semiconductors and optics, enabling the manipulation of light on silicon chips. As data centers face unprecedented bandwidth demands driven by AI workloads, cloud computing, and video streaming, traditional copper interconnects reach fundamental physical limitations in terms of bandwidth, power consumption, and density. Silicon photonics offers a solution by leveraging light's inherent advantages: higher bandwidth, lower latency, reduced power consumption, and immunity to electromagnetic interference.
The technology is particularly crucial now due to the exponential growth in AI/ML applications, which require massive data movement between processors, memory, and storage. Silicon photonics enables the high-bandwidth, energy-efficient interconnects essential for scaling these systems. Additionally, the convergence of silicon photonics with mature CMOS manufacturing processes allows for cost-effective production at scale, making widespread adoption increasingly viable.
Looking toward the future, silicon photonics will play a pivotal role in multiple frontier technologies. In quantum computing, PICs provide the precise control of photonic qubits necessary for quantum information processing. For next-generation sensing, PIC-based LiDAR systems will enable autonomous vehicles with improved performance and reduced cost. In telecommunications, silicon photonics will support the backbone of 5G/6G networks and beyond, meeting ever-increasing bandwidth demands.
As the technology matures, we're witnessing a transition from discrete optical components to highly integrated photonic circuits that combine multiple functions on a single chip, similar to the evolution seen in the electronic semiconductor industry. This integration, coupled with advanced packaging technologies like co-packaged optics, will continue to drive improvements in performance, energy efficiency, and cost, cementing silicon photonics as a foundational technology for our increasingly connected, data-intensive world.
The Global Silicon Photonics and Photonic Integrated Circuits Market 2023-2035 provides an in-depth analysis of the rapidly evolving silicon photonics and photonic integrated circuits (PICs) landscape, offering strategic insights into market dynamics, technology trends, and growth opportunities across multiple application segments from 2023 to 2035.
Key Report Features:
- Material Platform Analysis: Comparative assessment of silicon, silicon nitride, lithium niobate, indium phosphide, and emerging material technologies
- Application Segmentation: In-depth market forecasts for datacom, telecom, sensing, AI acceleration, and quantum computing applications
- Manufacturing and Packaging: Evaluation of wafer processing challenges, yield management, and advanced packaging technologies including co-packaged optics
- Competitive Landscape: Profiles of 186 companies across the entire value chain from materials suppliers to system integrators
- Technology Roadmaps: Forecasts for product development timelines, performance improvements, and market adoption rates
- Introduction to Silicon Photonics: Fundamental principles, comparative advantages over traditional technologies, and basic optical data transmission mechanisms
- Materials and Components Analysis: Comprehensive review of platform technologies including silicon-on-insulator (SOI), germanium photodetectors, silicon nitride waveguides, thin-film lithium niobate, and hybrid integration approaches
- Advanced Packaging Technologies: Detailed analysis of 2.5D and 3D integration technologies, through-silicon vias (TSVs), hybrid bonding, and co-packaged optics solutions
- Market Applications in Depth:
- Datacom: Data center architectures, transceiver evolution, co-packaged optics, and high-performance computing interconnects
- Telecommunications: 5G/6G infrastructure, optical networking, and long-haul/metro applications
- Sensing: LiDAR systems, chemical/biological sensing, and medical diagnostics
- AI/ML: Photonic processors, neural network accelerators, and programmable photonic systems
- Quantum: PIC-based quantum computing architectures, quantum communications, and single-photon sources
- Market Forecasts 2023-2035:
-
- Global market size and regional analysis
- Segmentation by application, material platform, and component type
- Pricing trends and volume projections for key product categories
- Detailed forecasts for emerging segments including AI transceivers and quantum PICs
- Supply Chain Analysis: Foundry landscape, fabless designers, integrated device manufacturers, and end-users
- Technology Trends: Laser integration techniques, modulator innovations, photodetector developments, and waveguide advancements
- Challenges and Future Directions: CMOS-foundry compatibility, power consumption issues, packaging optimization, and scalability solutions.
This report provides essential strategic intelligence for technology vendors, component manufacturers, system integrators, end-users, and investors to navigate the complex and rapidly evolving silicon photonics ecosystem. With detailed technical benchmarking, market forecasts, and competitive analysis, the report enables stakeholders to identify growth opportunities, anticipate technological disruptions, and develop informed strategies for this transformative market.
The report provides comprehensive profiles of 183 companies across the silicon photonics and photonic integrated circuits ecosystem. Each profile includes company background, technology focus, product offerings, manufacturing capabilities, partnerships, and market positioning to provide a complete view of the competitive landscape and ecosystem relationships.
Table of Contents
Companies Mentioned (Partial List)
A selection of companies mentioned in this report includes, but is not limited to:
- Accelink Technologies
- Aeva Technologies
- Aeponyx
- Advanced Fiber Resources
- AIM Photonics
- AIO Core
- Alibaba Cloud
- Amazon (AWS)
- ANSYS
- Advanced Micro Foundry (AMF)
- Amkor Technology
- AMO GmbH
- Analog Photonics
- Anello Photonics
- Aryballe
- A*STAR
- ASE Holdings
- Aurora Innovation
- Axalume
- AXT
- Ayar Labs
- Baidu
- Bay Photonics
- BE Epitaxy Semiconductor
- Broadcom
- Black Semiconductor
- Broadex
- ByteDance
- Cadence
- Camgraphic
- CEA LETI
- Celestial AI
- Centera Photonics
- Cambridge Industries Group (CIG)
- Ciena Corporation
- CISCO Systems
- CNIT
- Coherent Corp.
- CompoundTek
- Cornerstone
- Crealights Technology
- DustPhotonics
- EFFECT Photonics
- Eoptolink (Alpine Optoelectronics)
- Ephos
- Epiphany
- Fabrinet
- Fast Photonics
- Fiberhome
- Fibertop China Shen Zhen Fibertop Technology
- ficonTEC
- FormFactor
- Fujitsu
- Genalyte
- Gigalight
- GlobalFoundries
- HGGenuine
- Hisense Broadband
- HyperLight
- HyperPhotonix
- Icon Photonics
- InnoLight Technology
- Innosemi
- IntelliEpi
- Inphotec
- Intel
- Imec
- IMECAS
- iPronics
- JABIL
- JCET Group
- JFS Laboratory
- JSR Corporation
- Juniper Networks
- Ki3 Photonics
- LandMark
- Leoni AG
- Ligentec
- Lightelligence
- Lightium
- Lightmatter
- Lightsynq Technologies
- Lightwave Logic
- Light Trace Photonics
- Liobate Technologies
- LioniX International
- LPKF
- Lumentum
- Luceda
- Luminous Computing
- LuminWave Technology
- Lumiphase AG
- Luxshare Precision Industry
- Luxtelligence SA
- MACOM
- Marvell
- Molex
- NanoLN
- NanoWired
- NEC Corporation
- NewPhotonics
- NGK Insulators
- NLM Photonics
- Nokia Corporation
- Novel Si Integration Technology
- NTT Corporation
- Nvidia
- O-Net
- OpenLight Photonics
- OriChip Optoelectronics Technology
- Partow Technologies
- PETRA
- Phix
- PHOTON IP
Methodology
LOADING...