Introduction to Nuclear Mechanics and Genome Regulation provides a detailed discussion of the biophysical principles underlying nuclear organization and their role in determining tissue function, cell differentiation and homeostasis, and disease expression and management. Applied case studies and full cover images support concept illustration across a diverse range of chapters covering physico-chemical constraints in DNA, 3D organization of chromosomes and functional gene clusters, spatial dimensions of DNA transcription, replication, damage and repair, and more. With its practical approach and foundational focus, this book will be an invaluable reference for students, researchers and clinicians looking to understand this area of cutting-edge study.
- Contains applied case studies and full color images that support concept illustration
- Features a diverse range of chapters that cover the fundamentals of nuclear mechanics and genome regulation, including physico-chemical constraints in DNA
- Introduces advanced biophysical methods, bio-imaging methods, and new molecular biology tools for studying nuclear structures
Table of Contents
1. Physico-chemical constraints in DNA2. 3D organization of chromosomes and functional gene clusters
3. Spatial dimension to DNA transcription, replication, damage and repair
4. Dynamics within the nucleus and functional microrheology
5. Cytoskeleton to nuclear links and prestressed nuclear architecture
6. Nuclear mechanotransduction and genetic networks
7. Chromatin plasticity during differentiation, development and reprogramming
8. Mechanical homeostasis of the nucleus during cell division and migration
9. Nuclear mechanics in diseases and as diagnostic markers
10. Evolutionary constraints in DNA packing and genome regulation