+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G. Edition No. 1

  • Book

  • 416 Pages
  • August 2018
  • John Wiley and Sons Ltd
  • ID: 4457661

Summarizes and surveys current LTE technical specifications and implementation options for engineers and newly qualified support staff

Concentrating on three mobile communication technologies, GSM, 3G-WCDMA, and LTE - while majorly focusing on Radio Access Network (RAN) technology - this book describes principles of mobile radio technologies that are used in mobile phones and service providers’ infrastructure supporting their operation. It introduces some basic concepts of mobile network engineering used in design and rollout of the mobile network. It then follows up with principles, design constraints, and more advanced insights into radio interface protocol stack, operation, and dimensioning for three major mobile network technologies: Global System Mobile (GSM) and third (3G) and fourth generation (4G) mobile technologies. The concluding sections of the book are concerned with further developments toward next generation of mobile network (5G). Those include some of the major features of 5G such as a New Radio, NG-RAN distributed architecture, and network slicing. The last section describes some key concepts that may bring significant enhancements in future technology and services experienced by customers.

Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G covers the types of Mobile Network by Multiple Access Scheme; the cellular system; radio propagation; mobile radio channel; radio network planning; EGPRS - GPRS/EDGE; Third Generation Network (3G), UMTS; High Speed Packet data access (HSPA); 4G-Long Term Evolution (LTE) system; LTE-A; and Release 15 for 5G.

  • Focuses on Radio Access Network technologies which empower communications in current and emerging mobile network systems
  • Presents a mix of introductory and advanced reading, with a generalist view on current mobile network technologies
  • Written at a level that enables readers to understand principles of radio network deployment and operation
  • Based on the author’s post-graduate lecture course on Wireless Engineering
  • Fully illustrated with tables, figures, photographs, working examples with problems and solutions, and section summaries highlighting the key features of each technology described

Written as a modified and expanded set of lectures on wireless engineering taught by the author, Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G is an ideal text for post-graduate and graduate students studying wireless engineering, and industry professionals requiring an introduction or refresher to existing technologies.

Table of Contents

Foreword xvii

Acknowledgements xix

Abbreviations xxi

1 Introduction 1

2 Types of Mobile Network by Multiple-Access Scheme 3

3 Cellular System 5

3.1 Historical Background 5

3.2 Cellular Concept 5

3.3 Carrier-to-Interference Ratio 6

3.4 Formation of Clusters 8

3.5 Sectorization 9

3.6 Frequency Allocation 10

3.7 Trunking Effect 11

3.8 Erlang Formulas 13

3.9 Erlang B Formula 13

3.10 Worked Examples 14

3.10.1 Problem 1 14

3.10.2 Problem 2 16

3.10.3 Problem 3 16

4 Radio Propagation 19

4.1 Propagation Mechanisms 19

4.1.1 Free-Space Propagation 19

4.1.2 Propagation Models for Path Loss (Global Mean) Prediction 22

5 Mobile Radio Channel 27

5.1 Channel Characterization 28

5.1.1 Narrowband Flat Channel 31

5.1.2 Wideband Frequency Selective Channel 31

5.1.3 Doppler Shift 34

5.2 Worked Examples 36

5.2.1 Problem 1 36

5.2.2 Problem 2 36

5.3 Fading 36

5.3.1 Shadowing/Slow Fading 37

5.3.2 Fast Fading/Rayleigh Fading 40

5.4 Diversity to Mitigate Multipath Fading 42

5.4.1 Space and Polarization Diversity 42

5.5 Worked Examples 44

5.5.1 Problem 1 44

5.5.2 Problem 2 44

5.5.3 Problem 3 45

5.6 Receiver Noise Factor (Noise Figure) 45

6 Radio Network Planning 49

6.1 Generic Link Budget 49

6.1.1 Receiver Sensitivity Level 50

6.1.2 Design Level 50

6.1.2.1 Rayleigh Fading Margin 51

6.1.2.2 Lognormal Fading Margin 51

6.1.2.3 Body Loss 51

6.1.2.4 Car Penetration Loss 51

6.1.2.5 Design Level 51

6.1.2.6 Building Penetration Loss 52

6.1.2.7 Outdoor-to-Indoor Design Level 52

6.1.3 Power Link Budget 52

6.1.4 Power Balance 53

6.2 Worked Examples 56

6.2.1 Problem 1 56

6.2.2 Problem 2 57

6.2.3 Problem 3 58

7 Global System Mobile, GSM, 2G 59

7.1 General Concept for GSM System Development 59

7.2 GSM System Architecture 59

7.2.1 Location Area Identity (LAI) 62

7.2.2 The SIM Concept 63

7.2.3 User Addressing in the GSM Network 63

7.2.4 International Mobile Station Equipment Identity (IMEI) 63

7.2.5 International Mobile Subscriber Identity (IMSI) 64

7.2.6 Different Roles of MSISDN and IMSI 64

7.2.7 Mobile Station Routing Number 64

7.2.8 Calls to Mobile Terminals 65

7.2.9 Temporary Mobile Subscriber Identity (TMSI) 66

7.2.10 Security-Related Network Functions: Authentication and Encryption 66

7.2.11 Call Security 67

7.2.12 Operation and Maintenance Security 69

7.3 Radio Specifications 69

7.3.1 Spectrum Efficiency 69

7.3.2 Access Technology 71

7.3.3 MAHO and Measurements Performed by Mobile 72

7.3.4 Time Slot and Burst 73

7.3.4.1 Normal Burst 74

7.3.4.2 Frequency Correction Burst (FB) 74

7.3.4.3 Synchronization Burst 75

7.3.4.4 Access Burst 75

7.3.4.5 Dummy Burst 75

7.3.5 GSM Adaptation to a Wideband Propagation Channel 76

7.3.5.1 Training Sequence and Equalization 76

7.3.5.2 The Channel Equalization 77

7.3.5.3 Diversity Against Fast Fading 78

7.3.5.4 Frequency Hopping 79

7.4 Background for the Choice of Radio Parameters 81

7.4.1 Guard Period, Timing Advance 83

7.5 Communication Channels in GSM 84

7.5.1 Traffic Channels (TCHs) 84

7.5.2 Control Channels 85

7.5.2.1 Common Control Channels 85

7.5.2.2 Dedicated Control Channels 86

7.6 Mapping the Logical Channels onto Physical Channels 86

7.6.1 Frame Format 87

7.6.2 Transmission of User Information: Fast Associated Control Channel 88

7.6.2.1 Data Rates 88

7.6.3 Signalling Multiframe, 51-Frame Multiframe 88

7.6.4 Synchronization 89

7.6.4.1 Frequency Synchronization 90

7.6.4.2 Time Synchronization 90

7.6.5 Signalling Procedures over the Air Interface 90

7.6.5.1 Synchronization to the Base Station 90

7.6.5.2 Registering With the Base Station 91

7.6.5.3 Call Setup 91

7.7 Signalling During a Call 93

7.7.1 Measuring the Signal Levels from Adjacent Cells 93

7.7.2 Handover 94

7.7.2.1 Intra-Cell and Inter-Cell Handover 95

7.7.2.2 Intra- and Inter-BSC Handover 95

7.7.2.3 Intra- and Inter-MSC Handover 95

7.7.2.4 Intra- and Inter-PLMN Handover 95

7.7.2.5 Handover Triggering 95

7.7.3 Power Control 96

7.8 Signal Processing Chain 97

7.8.1 Speech and Channel Coding 97

7.8.2 Reordering and Interleaving of the TCH 99

7.9 Estimating Required Signalling Capacity in the Cell 100

7.9.1 SDCCH Configuration 100

7.9.2 Worked Example 101

7.9.2.1 Problem 1 101

References 102

8 EGPRS: GPRS/EDGE 103

8.1 GPRS Support Nodes 103

8.2 GPRS Interfaces 104

8.3 GPRS Procedures in Packet Call Setups 104

8.4 GPRS Mobility Management 105

8.4.1 Mobility Management States 106

8.4.1.1 IDLE State 106

8.4.1.2 READY State 106

8.4.1.3 STANDBY State 106

8.4.2 PDP Context Activation 107

8.4.3 Location Management 108

8.5 Layered Overview of the Radio Interface 108

8.5.1 SNDP 108

8.5.2 Layer Services 109

8.5.3 Radio Link Layer 110

8.5.3.1 RLC Block Structure 110

8.5.4 GPRS Logical Channels 111

8.5.5 Mapping to Physical GPRS Channels 111

8.5.6 Channel Sharing 112

8.5.6.1 Downlink Radio Channel 113

8.5.6.2 Uplink Radio Channel 113

8.5.7 TBF 113

8.5.7.1 TBF Establishment 113

8.5.7.2 DL TBF Establishment 113

8.5.8 EGPRS Channel Coding and Modulation 15

8.6 GPRS/GSM Territory in a Base-Station Transceiver 115

8.6.1 PS Capacity in the Base Station/Cell 116

8.7 Summary 118

References 119

9 Third Generation Network (3G), UMTS 121

9.1 The WCDMA Concept 123

9.1.1 Spreading (Channelization) 124

9.1.2 Scrambling 127

9.1.3 Multiservice Capacity 128

9.1.4 Power Control 129

9.1.4.1 Open-Loop Power Control 130

9.1.4.2 Outer-Loop Power Control 130

9.1.5 Handover 132

9.1.5.1 Softer Handover 132

9.1.5.2 Other Handovers 134

9.1.5.3 Compressed Mode 134

9.1.6 RAKE Reception 135

9.2 Major Parameters of 3G WCDMA Air Interface 136

9.3 Spectrum Allocation for 3G WCDMA 136

9.4 3G Services 138

9.4.1 Bearer Service and QoS 138

9.5 UMTS Reference Network Architecture and Interfaces 140

9.5.1 The NodeB (Base Station) Functions in the 3G Network 141

9.5.2 Role of the RNC in 3G Network 141

9.6 Air-Interface Architecture and Processing 142

9.6.1 Physical Layer (Layer 1) 144

9.6.2 Medium Access Control (MAC) on Layer 2 144

9.6.3 Radio Link Control (RLC) on Layer 2 145

9.6.4 RRC on Layer 3 in the Control Plane 145

9.7 Channels on the Air Interface 146

9.7.1 Logical Channels 146

9.7.2 Transport Channels 146

9.7.2.1 Dedicated Transport Channel (DCH) 147

9.7.2.2 Common Transport Channels 147

9.7.3 Physical Channels and Physical Signals 148

9.7.4 Parameters of the Transport Channel 148

9.8 Physical-Layer Procedures 150

9.8.1 Processing of Transport Blocks 151

9.8.2 Spreading and Modulation 154

9.8.3 Modulation Scheme in UTRAN FDD 155

9.8.4 Composition of the Physical Channels 157

9.8.4.1 Dedicated Physical Channel 157

9.8.4.2 Common Downlink Physical Channels 160

9.9 RRC States 162

9.9.1 Idle Mode 162

9.9.2 RRC Connected Mode 164

9.9.3 RRC Connection Procedures 165

9.9.4 RRC State Transition Cases 166

9.10 RRM Functions 167

9.10.1 Admission Control Principle 167

9.10.2 Load/Congestion Control 168

9.10.3 Code Management 168

9.10.4 Packet Scheduling 168

9.11 Initial Access to the Network 169

9.12 Summary 170

References 171

10 High-Speed Packet Data Access (HSPA) 173

10.1 HSDPA, High-Speed Downlink Packet Data Access 173

10.2 HSPA RRM Functions 175

10.2.1 Channel-Dependent Scheduling for HS-DSCH 175

10.2.2 Rate Control, Dynamic Resource Allocation, Adaptive Modulation and Coding 176

10.2.3 Hybrid-ARQ with Soft Combining, HARQ 176

10.2.4 Retransmission Mechanism in the NodeB 176

10.2.5 Impact to Protocol Architecture 177

10.2.6 HARQ Schemes 178

10.3 MAC-hs and Physical-Layer Processing 181

10.4 HSDPA Channels 182

10.4.1 High-Speed Downlink Shared Channel (HS-DSCH) 182

10.4.2 HSDPA Control Channels 183

10.4.2.1 Fractional Downlink Power Control Channel 184

10.4.3 HS-DSCH Link Adaptation 184

10.5 HSUPA (Enhanced Uplink, E-DCH) 189

10.5.1 Control Signalling 190

10.5.2 Scheduling 190

10.6 Air-Interface Dimensioning 192

10.6.1 Input Parameters and Requirements 192

10.6.2 Traffic Demand Estimation 193

10.6.2.1 PS Data Services (Release 99) 193

10.6.2.2 HSPA Data Services 193

10.6.3 Standard Traffic Model 194

10.6.4 Link Budgets 195

10.6.4.1 Uplink Load Factor 196

10.6.4.2 Downlink Load Factor 197

10.6.4.3 Link Budget for R99 Bearers 198

10.6.4.4 Link Budget for HSPA 199

10.6.4.5 Results of Link Budget: Cell Range Calculation, Balancing UL with DL 199

10.6.4.6 Link Budget for Common Pilot Channel Signal 200

10.6.4.7 Link Budget Calculation for the Shared Release 99 and HSDPA Carriers 200

10.6.5 Uplink Capacity Estimation 201

10.6.5.1 Required Bandwidth and Load for Multiple Bearers with GOS Considerations 202

10.6.5.2 Simplified Estimation of HSDPA Throughput Capacity 202

10.7 Summary 203

References 204

11 4G-Long Term Evolution (LTE) System   205

11.1 Introduction 205

11.2 Architecture of an Evolved Packet System 206

11.3 LTE Integration with Existing 2G/3G Network 207

11.3.1 EPS Reference Points and Interfaces 208

11.4 E-UTRAN Interfaces 209

11.5 User Equipment 210

11.5.1 LTE UE Category 210

11.6 QoS in LTE 211

11.7 LTE Security 212

11.8 LTE Mobility 214

11.8.1 Idle Mode Mobility 214

11.8.2 ECM-CONNECTED Mode Mobility 215

11.8.3 Mobility Anchor 216

11.8.4 Inter-eNB Handover 216

11.8.5 3GPP Inter-RAT Handover 218

11.8.6 Differences in E-UTRAN and UTRAN Mobility 218

11.9 LTE Radio Interface 219

11.10 Principle of OFDM 220

11.11 OFDM Implementation using IFFT/FFT Processing 223

11.12 Cyclic Prefix 223

11.13 Channel Estimation and Reference Symbols 225

11.14 OFDM Subcarrier Spacing 227

11.15 Output RF Spectrum Emissions 227

11.16 LTE Multiple-Access Scheme, OFDMA 228

11.17 Single-Carrier FDMA (SC-FDMA) 229

11.18 OFDMA versus SC-FDMA Operation 230

11.19 SC-FDMA Receiver 231

11.20 User Multiplexing with DFTS-OFDM 231

11.21 MIMO Techniques 232

11.21.1 Precoding 234

11.21.2 Cyclic Delay Diversity (CDD) 236

11.22 Link Adaptation and Frequency Domain Packet Scheduling 237

11.23 Radio Protocol Architecture 238

11.23.1 User Plane 239

11.23.2 Control Plane 239

11.23.3 Scheduler 240

11.23.4 Logical and Transport Channels 240

11.23.5 Physical Layer 242

11.23.6 RRC State Machine 244

11.23.7 Time-Frequency Structure of the LTE FDD Physical Layer 244

11.24 Downlink Physical Layer Processing 248

11.24.1 Multiplexing and Channel Coding for Downlink Transport Channels 248

11.24.2 CRC Computation and Attachment to the Transport Block 248

11.24.3 Code Block Segmentation and Code Block CRC Attachment 249

11.24.4 Channel Coding 249

11.24.5 Rate Matching for Turbo Coded Transport Channels 249

11.24.6 Downlink Control Information Coding 250

11.24.7 Physical Channel Processing 250

11.24.7.1 Bit-Level Scrambling 251

11.24.7.2 Data Modulation 251

11.24.7.3 Layer Mapping 252

11.24.7.4 Precoding 252

11.24.7.5 Mapping to Resource Elements 255

11.24.7.6 Downlink Reference Signals 256

11.25 Downlink Control Channels 258

11.25.1 Structure of the Synchronization Channel 258

11.25.2 Time-Domain Position of Synchronization Signals 259

11.25.3 Frequency Domain Structure of Synchronization Signals 259

11.25.3.1 PSS Structure 259

11.25.3.2 SSS Structure 260

11.25.4 PBCH 260

11.25.5 Physical Control Format Indicator Channel: PCFICH 262

11.25.6 PDCCH 263

11.25.7 PHICH, Physical Hybrid-ARQ Indicator Channel 264

11.26 Mapping the Control Channels to Downlink Transmission Resources 264

11.27 Uplink Control Signalling 264

11.27.1 Processing of the Uplink Shared Transport Channel 266

11.27.2 Channel Coding of Control Information 266

11.27.3 Multiplexing and Channel Interleaving 266

11.27.4 Processing for Physical Uplink Shared Channel 268

11.27.5 Physical Uplink Control Channel, PUCCH 269

11.27.6 Multiplexing of UEs Within a PUCCH 269

11.27.7 Physical Random Access Channel (PRACH) 270

11.28 Uplink Reference Signals 271

11.28.1 Mapping of Reference Signals to the Uplink Frame Structure 272

11.29 Physical-Layer Procedures 273

11.29.1 Cell Search 273

11.29.2 Random Access Procedure 274

11.29.3 Link Adaptation 276

11.29.4 Power Control 277

11.29.5 Paging 278

11.29.6 HARQ 278

11.30 LTE Radio Dimensioning 279

11.30.1 LTE Coverage Dimensioning: Link Budget 280

11.30.1.1 Physical-Layer Overhead Factors 281

11.30.1.2 Multi-Antenna Systems 284

11.30.1.3 Required SINR 285

11.30.1.4 Link Budget Margins 285

11.30.1.5 Interference Margin 285

11.30.1.6 Maximum Allowable Path Loss (MAPL) 287

11.30.1.7 Required SINR 288

11.30.2 Cell Range and Cell Capacity 288

11.31 Summary 289

References 290

12 LTE-A 293

12.1 Carrier Aggregation 296

12.2 Enhanced MIMO 300

12.3 Coordinated Multi-Point Operation (CoMP) 303

12.3.1 CoMP Categories 304

12.3.2 Downlink CoMP 306

12.3.3 Uplink CoMP 307

12.4 Relay Nodes 309

12.4.1 Relay Radio Access 309

12.4.2 Relay Architecture 311

12.4.3 Resource Assignment for DeNB-RN Link in a Type 1 Relay 314

12.5 Enhanced Physical Downlink Control Channel (E-PDCCH) 315

12.6 Downlink Multiuser Superposition, MUST 315

12.7 Summary of LTE-A Features 317

References 317

13 Further Development for the Fifth Generation 319

13.1 Overall Operational Requirements for a 5G Network System 320

13.2 Device Requirements 320

13.3 Capabilities of 5G 321

13.4 Spectrum Consideration 321

13.5 5G Technology Components 322

13.5.1 Technologies to Enhance the Radio Interface 322

13.5.1.1 Advanced Modulation-and-Coding Schemes 323

13.5.1.2 Non-Orthogonal Multiple Access (NOMA) 323

13.5.1.3 Active Antenna System (AAS) 326

13.5.1.4 3D Beamforming and Multiuser MIMO (MU-MIMO) 327

13.5.1.5 Massive MIMO 328

13.5.1.6 Full Duplex Mode 329

13.5.1.7 Self-Backhauling 330

13.5.2 Technologies to Enhance Network Architectures 331

13.5.2.1 Software-Defined Network 332

13.5.2.2 Cloud RAN 332

13.5.2.3 Network Slicing 332

13.5.2.4 Self-Organized Network, SON 334

13.6 5G System Architecture (Release 15) 335

13.6.1 General Concepts 335

13.6.2 Architecture Reference Model 335

13.6.3 Network Slicing Support 338

13.6.3.1 General Framework 338

13.6.3.2 Network Slice Selection Assistance Information (NSSAI) 338

13.6.3.3 Selection of a Serving AMF Supporting the Network Slices 339

13.6.3.4 UE Context Handling 340

13.7 New Radio (NR) 341

13.7.1 NG-RAN Architecture 341

13.7.2 Functional Split 342

13.7.3 Network Interfaces 343

13.7.3.1 NG Interface 343

13.7.4 Xn Interface 345

13.7.5 NG-RAN Distributed Architecture 346

13.7.5.1 F1 Interface Functions 347

13.7.5.2 F1 Protocol Structure 347

13.7.6 Radio Protocol Architecture 348

13.7.6.1 User Plane 348

13.7.7 NR Physical Channels and Modulation 350

13.7.7.1 Physical-Layer Design Requirements 350

13.7.7.2 Frame Structure and Physical Resources 352

13.7.8 Frames and Subframes 353

13.7.9 Physical Resources 354

13.7.9.1 Resource Grid 354

13.7.9.2 Resource Blocks 355

13.7.10 Carrier Aggregation 356

13.7.11 Uplink Physical Channels and Signals 356

13.7.12 Downlink Physical Channels and Signals 357

13.7.13 SS/PBCH Block 358

13.7.14 Coding and Multiplexing 359

13.7.15 NR Dual Connectivity 359

13.7.16 E-UTRA and NR Multi-RAT Dual Connectivity 360

13.7.16.1 Bearer Types for MR-DC Between LTE and NR 362

13.7.16.2 MR-DC User-Plane Connectivity 363

13.8 Summary 364

References 364

14 Annex: Base-Station Site Solutions 367

14.1 The Base-Station OBSAI Architecture 367

14.1.1 Functional Modules 367

14.1.2 Internal Interfaces 369

14.1.3 RP3 Interface 369

14.2 Common Public Radio Interface, CPRI 370

14.3 SDR and Multiradio BTS 371

14.4 Site Solution with OBSAI Type Base Stations 372

14.4.1 C-RAN Site Solutions 374

References 375

Index 377

Authors

Alexander Kukushkin Marconi Australia Pty Ltd..