Biomembranes consist of molecular bilayers with many lipid and protein components. The fluidity of these bilayers allows them to respond to different environmental cues by changing their local molecular composition as well as their shape and topology. On the nanometer scale, this multi-responsive behavior can be studied by molecular dynamics simulations, which provide both snapshots and movies of the bilayer conformations. The general conceptual framework for these simulations is provided by the theory of curvature elasticity. The latter theory also explains the behavior of giant vesicles as observed by optical microscopy on the micrometer scale. The present volume describes new insights as obtained from recent developments in analytical theory, computer simulations, and experimental approaches. The seven chapters of the volume are arranged in a bottom-up manner from smaller to larger scales. These chapters address the refined molecular dynamics and multiscale modeling of biomembranes, their morphological complexity and adhesion, the engulfment and endocytosis of nanoparticles, the fusion of giant unilamellar vesicles, as well as recent advances in microfluidic technology applied to model membranes.
Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Table of Contents
1. Refined molecular dynamics simulations of phospholipid bilayersMarkus S. Miettinen
2. Multiscale (re)modeling of lipid bilayer membranes
Andrea Grafm�ller
3. Understanding and controlling the morphological complexity of biomembranes
Reinhard Lipowsky
4. Binding and segregation of proteins in membrane adhesion: theory, modelling, and simulations
Thomas R. Weikl, Jinglei Hu, Batuhan Kav, and Bartosz R�zycki
5. Engulfment of nanoparticles by membranes
Jaime Agudo-Canalejo
6. Fusion assays for model membranes: a critical review
Rafael B. Lira and Rumiana Dimova
7. Microfluidics and giant vesicles: creation, capture, and applications for biomembranes
Tom Robinson