+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Heterogeneous Catalysis in Sustainable Synthesis. Advances in Green and Sustainable Chemistry

  • Book

  • September 2021
  • Elsevier Science and Technology
  • ID: 4850230

Heterogeneous Catalysis in Sustainable Synthesis is a practical guide to the use of solid catalysts in synthetic chemistry that focuses on environmentally benign applications. Collating essential information on solid catalysts into a single volume, it reveals how the efficient use of heterogeneous catalysts in synthetic chemistry can support sustainable applications. Beginning with a review of the fundamentals of heterogeneous catalytic synthesis, the book then explores the basic concepts of heterogeneous catalytic reactions from adsorption to catalyst poisons, the use of non-traditional activation methods, recommended solvents, the major types of both metal and non-metal solid catalysts, and applications of these catalysts in sustainable synthesis.

Based on the extensive experience of its expert author, this book aims to encourage and support synthetic chemists in using solid catalysts in their own work, while also highlighting the important link between heterogeneous catalysis and sustainability to all those interested.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Heterogeneous catalysis for organic synthesis: historical background and fundamentals
2. Solid catalysts for environmentally benign synthesis
3. Application of heterogeneous catalysis in the development of environmentally benign synthetic processes
3.1. Hydrogenation
3.2. Heterogeneous catalytic hydrogenolysis of organic compounds
3.3. Heterogeneous catalytic oxidations
3.4. Metathesis by heterogeneous catalysts
3.5. Friedel-Crafts and related reactions catalyzed by solid acids
3.6. Cross-coupling reactions for environmentally benign synthesis
3.7. Multicomponent Reactions
3.8. Ring transformations by heterogeneous catalysis
3.9. Heterogenous catalytic rearrangements and other transformations
3.10. Asymmetric synthesis by solid catalysts

Authors

Bela Torok Professor of Chemistry, Department of Chemistry, University of Massachusetts, Boston, USA. Dr Torok received his Ph.D. from the University of Szeged, Hungary in Organic Chemistry/Heterogeneous Catalysis in 1995. After receiving his Ph.D. he did postdoctoral training with the 1994 Nobel Laureate George Olah at the University of Southern California in Los Angeles working on the development of environmentally benign alkylate gasoline production. He has held various faculty appointments at Michigan Technological University and the University of Massachusetts Boston, where he is currently a Professor of Chemistry. In 2011/12 he was a visiting professor at the Massachusetts Institute of Technology working with the 2005 Nobel Laureate Richard Schrock on the development of new alkene metathesis catalysts. His main research focus is on the design of new green chemistry processes for the synthesis of fine chemicals and pharmaceuticals. The major tools applied in his research are heterogeneous catalysis (both metal and solid acid), catalytic hydrogenation, the application of aqueous medium in organic synthesis and unusual activation methods such as microwave and ultrasonic irradiation. He has published over 150 papers and book chapters, many of them in the journal Green Chemistry and Green Chemistry related books. Christian Schaefer Lecturer and Research Scientist, Department of Chemistry, University of Massachusetts, Boston, USA. Dr Sch�fer received his Dipl.-Ing. degree in chemistry after studies at the Technical University Darmstadt and University Bordeaux 1. Subsequently he moved to University of Strasbourg and worked on metal-mediated cyclization reactions under the supervision of Michel Miesch. After obtaining his PhD from the University of Strasbourg in 2013, he moved to the University of Massachusetts Boston to work as a postdoctoral researcher with B�la T�r�k. He is currently a lecturer and research scientist at UMass Boston, where his research interests are in the development of new methods for green transformations with a focus on catalytic hydrogenation in water. Anne Kokel Researcher in Green Chemistry, Department of Chemistry, University of Massachusetts, Boston, USA. Anne Kokel has been a researcher in Green Chemistry at the University of Massachusetts, Boston, USA since 2015, where her work focuses on the design of green methods using energy-efficient techniques, non-toxic chemicals and recyclable processes for the synthesis of compounds with biomedical relevance. After studying at the Universite de Bourgogne, France, she went on to complete her MA at Universit� Savoie Mont Blanc, France, before joining the University of Louisiana at Lafayette, USA in 2014. With a strong knowledge of green chemistry, toxicology and medicinal chemistry, she has published multiple papers, reviews and book chapters.