This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.
Table of Contents
Preface xxi
Part 1 Silicon Photovoltaics 1
1 Emergence of Continuous Czochralski (CCZ) Growth for Monocrystalline Silicon Photovoltaics 3
Santosh K. Kurinec, Charles Bopp and Han Xu
1.1 Introduction 4
1.1.1 The Czochralski (CZ) Process 5
1.1.2 Continuous Czochralski Process (CCZ) 11
1.2 Continuous Czochralski Process Implementations 13
1.3 Solar Cells Fabricated Using CCZ Ingots 15
1.3.1 n-Type Mono-Si High-Efficiency Cells 15
1.3.2 Gallium-Doped p-Type Silicon Solar Cells 17
1.4 Conclusions 19
References 19
2 Materials Chemistry and Physics for Low-Cost Silicon Photovoltaics 23
Tingting Jiang and George Z. Chen
2.1 Introduction 24
2.2 Crystalline Silicon in Traditional/Classic Solar Cells 26
2.2.1 Manufacturing of Silicon Solar Cell 26
2.2.2 Efficiency Loss in Silicon Solar Cell 29
2.2.3 New Strategies for the Silicon Solar Cell 32
2.3 Low-Cost Crystalline Silicon 33
2.3.1 Metallurgical Silicon 33
2.3.2 Upgraded Metallurgical-Grade Silicon 33
2.3.2.1 Properties of Upgraded Metallurgical-Grade Silicon 34
2.3.2.2 Production of Upgraded Metallurgical-Grade Silicon 35
2.3.2.3 Development of Upgraded Metallurgical-Grade Silicon Solar Cells 36
2.3.3 High-Performance Multicrystalline Silicon 37
2.3.3.1 Crystal Growth 37
2.3.3.2 Material Properties of High-Performance Multicrystalline Silicon 39
2.3.3.3 Solar Cell Based on High-Performance Multicrystalline Silicon 40
2.4 Advanced p-Type Silicon - in Passivated Emitter and Rear Cell (PERC) 41
2.4.1 Passivated Emitter Solar Cells 41
2.4.1.1 Passivated Emitter Solar Cell (PESC) 41
2.4.1.2 Passivated Emitter and Rear Cell 42
2.4.1.3 Passivated Emitter, Rear Locally Diffused Solar Cells 43
2.4.1.4 Passivated Emitter, Rear Totally Diffused Solar Cells 44
2.4.2 Surface Passivation 45
2.5 Advanced n-Type Silicon 46
2.5.1 Interdigitated Back Contact (IBC) Solar Cell 47
2.5.2 Silicon Heterojunction (SHJ) Solar Cells 50
2.5.2.1 The Device Structure and the Advantages of HIT Solar Cells 51
2.5.2.2 Strategies of Achieving High-Efficiency HIT Solar Cell 52
2.6 Conclusion 53
References 54
3 Recycling Crystalline Silicon Photovoltaic Modules 61
Pablo Dias and Hugo Veit
3.1 Waste Electrical and Electronic Equipment 62
3.2 Photovoltaic Modules 65
3.2.1 First-Generation Photovoltaic Modules 66
3.3 Recyclability of Waste Photovoltaic Modules 69
3.3.1 Frame 70
3.3.2 Superstrate (Front Glass) 71
3.3.3 Metallic Filaments (Busbars) 72
3.3.4 Photovoltaic Cell 73
3.3.5 Polymers 74
3.3.6 Recyclability Summary 75
3.4 Separation and Recovery of Materials The Recycling Process 76
3.4.1 Mechanical and Physical Processes 76
3.4.1.1 Shredding 77
3.4.1.2 Sieving 77
3.4.1.3 Density Separation 79
3.4.1.4 Manual Separation 82
3.4.1.5 Electrostatic Separation 82
3.4.2 Thermal Processes - Polymers 84
3.4.3 Separation Using Organic Solvents 86
3.4.4 Pyrometallurgy 90
3.4.5 Hydrometallurgy 90
3.4.6 Electrometallurgy 93
3.5 New Trends in the Recycling Processes 94
References 98
Part 2 Emerging Photovoltaic Materials 103
4 Photovoltaics in Ferroelectric Materials Origin, Challenges and Opportunities 105
Charles Paillard, Grégory Geneste, Laurent Bellaiche, Jens Kreisel, Marvin Alexe and Brahim Dkhil
4.1 Physics of the Photovoltaic Effect in Ferroelectrics 106
4.1.1 Conventional Photovoltaic Technologies 106
4.1.1.1 The p-n Junction 106
4.1.1.2 The Shockley-Queisser Limit 109
4.1.2 Mechanisms of the Photovoltaic Effect in Ferroelectric Materials 110
4.1.2.1 The Bulk Photovoltaic Effect 110
4.1.2.2 Barrier Effects 118
4.2 Opportunities and Challenges of Photoferroelectrics 123
4.2.1 To Switch or not to Switch 124
4.2.1.1 Switchability 124
4.2.1.2 Influence of Defects 125
4.2.2 The Bandgap Problem 127
4.2.3 Application of Light-Induced Effects in Ferroelectrics Beyond Solar Cells 129
4.2.3.1 Photovoltaics and ICTs 130
4.2.3.2 Photo-Induced Strain Toward Optically Controlled Actuators 130
4.2.3.3 Photochemistry for Clean Energy and Environment 131
4.3 Conclusions 133
Acknowledgements 134
References 134
5 Tin-Based Novel Cubic Chalcogenides A New Paradigm for Photovoltaic Research 141
Sajid Ur Rehman, Faheem K. Butt, Zeeshan Tariq and Chuanbo Li
5.1 Introduction 142
5.2 Cubic Tin Sulfide (π-SnS) 145
5.2.1 Application π-SnS in Solar Cells 145
5.2.2 Application of π-SnS in Optical Devices 147
5.3 Cubic Tin Selenide (π-SnSe) 153
5.3.1 Application of π-SnSe in Solar Cells 153
5.3.2 Application of π-SnSe in Optical Devices 154
5.4 Cubic Tin Telluride (π-SnTe) 157
5.4.1 Application of π-SnTe in Optical Devices 158
5.5 Conclusion 160
Acknowledgement 160
References 161
6 Insights into the Photovoltaic and Photocatalytic Activity of Cu-, Al-, and Tm-Doped TiO2 165
Antonio Sánchez-Coronilla, Javier Navas, Elisa I. Martín, Teresa Aguilar, Juan Jesús Gallardo, Desireé de los Santos, Rodrigo Alcántara and Concha Fernández-Lorenzo
6.1 Introduction 166
6.2 Materials and Methods 167
6.2.1 Experimental 167
6.2.2 Computational Framework 169
6.3 Cu-TiO2 Doping 170
6.3.1 Photovoltaics of the DSSCs 175
6.4 Al-TiO2 Doping 177
6.5 Tm-TiO2 Doping 181
6.5.1 Photovoltaic Characterization 184
6.5.2 Photocatalytic Activity 186
6.6 Conclusions 187
References 189
7 Theory of the Photovoltaic and Light-Induced Effects in Multiferroics 195
Bruno Mettout and Pierre Tolédano
7.1 Insufficiency of the Traditional Approach to the Bulk Photovoltaic Effect 196
7.2 Theoretical Approach to the Photovoltaic and Light-Induced Effects 197
7.3 Response Functions under Linearly Polarized Light 199
7.3.1 Mean Symmetry of the Light Beam 199
7.3.2 Response Functions 202
7.3.2.1 Achiral and Nonmagnetic Materials 202
7.3.2.2 Chiral and Magnetic Materials 205
7.4 Selection Procedures 206
7.4.1 External Selection 206
7.4.2 Internal Selection 208
7.5 Application of the Theory to the Photovoltaic and Photo-Induced Effects in LiNbO3 210
7.5.1 Second-Order Photovoltaic Effect 210
7.5.2 Photovoltaic Effects in LiNbO3 212
7.5.3 Optical Rectification, Photomagnetic, and Photo-Toroidal First-Order Effects 215
7.5.4 First-Order Photoelastic and Photo-Magnetoelectric Effects 216
7.6 Magnetoelectric, Photovoltaic, and Magneto-Photovoltaic Effects in KBiFe2O5 218
7.6.1 Magnetoelectric Effects in KBiFe2O5 in Absence of Illumination 218
7.6.2 Photovoltaic and Magneto-Photovoltaic Effects in KBiFe2O5 220
7.7 Photo-Magnetoelectric and Magneto-Photovoltaic Effects in BiFeO3 224
7.7.1 Photo-Magnetoelectric Effects 224
7.7.2 Photovoltaic Effects in BiFeO3 226
7.7.3 Magneto-Photovoltaic Effects in BiFeO3 227
7.8 Photorefractive and Photo-Hall Effects in Tungsten Bronzes 229
7.8.1 The Photorefractive Effect 230
7.8.2 The Photo-Hall Effect 231
7.9 Summary and Conclusion 234
Acknowledgement 235
References 235
8 Multication Transparent Conducting Oxides: Tunable Materials for Photovoltaic Applications 239
Peediyekkal Jayaram
8.1 Introduction 239
8.2 Multication Film Growth and Analysis 243
8.3 Structural Analysis 244
8.4 Raman Spectra 247
8.5 Surface Morphology (AFM) 248
8.6 Optical Properties UV-Vis Transmittance Spectra 248
8.7 Electrical Properties 253
8.8 Conclusion 257
References 258
Part 3 Perovskite Solar Cells 261
9 Perovskite Solar Cells Promises and Challenges 263
Qiong Wang and Antonio Abate
9.1 The Scientific and Technological Background 264
9.1.1 The Share of Silicon Solar Cells and Thin Film Solar Cells in Photovoltaic Market 264
9.1.2 The Bottleneck of Dye-Sensitized Solar Cells and Organic Solar Cells 266
9.1.3 From a Cost-Effective Alternative to the Highly Efficient Solution 269
9.2 The Fast Development of PSCs 270
9.2.1 The Fundamental Optoelectronic Properties of Hybrid Organic-Inorganic Lead Halide Perovskite Materials 271
9.2.1.1 Optical Properties 272
9.2.1.2 Electronic Properties 276
9.2.2 Composition Adjustment of Perovskite 288
9.2.2.1 Mixed Halides 288
9.2.2.2 Multi-Cations 292
9.2.2.3 Phase Segregation 297
9.2.3 Versatile Deposition Methods of Perovskite Film 297
9.2.3.1 Solution-Processed Methods 298
9.2.3.2 Vapor Deposition Methods 306
9.2.4 Charge Selective Contacts in PSCs 308
9.2.4.1 Electron Selective Contacts 309
9.2.4.2 Hole Selective Contacts 311
9.2.5 Evaluation of PSCs 315
9.2.5.1 J-V curve 315
9.2.5.2 Maximum Power Point Tracking (MPPT) 316
9.2.6 The Systematic Understanding of PSCs 318
9.2.6.1 Moisture Vulnerability of Perovskite Materials 318
9.2.6.2 The Role of Grain Boundaries 318
9.2.6.3 Ion Migration and Hysteresis 322
9.2.6.4 Interface/Bulk Defects and Passivation 324
9.2.7 PSCs in a Tandem 328
9.2.7.1 Structures of Perovskite Tandem Cells 328
9.2.7.2 Transparent Contacts and Recombination Contacts 330
9.3 Remaining Challenges and Prospects of PSCs 331
9.3.1 Lead-Free PSCs 331
9.3.2 Stable and Cheap Contact Materials 336
9.3.3 Strategies toward Stable PSCs 338
9.3.3.1 Against Moisture 338
9.3.3.2 Against UV Light 339
9.3.3.3 Against Heat 341
9.3.4 Large-Area Production of Highly Efficient PSCs 342
References 345
10 Organic-Inorganic Hybrid Perovskite, CH3NH3PbI3 Modifications in Pb Sites from Experimental and Theoretical Perspectives 357
Javier Navas, Antonio Sánchez-Coronilla, Juan Jesús Gallardo, Jose Carlos Piñero, Teresa Aguilar, Elisa I. Martín, Rodrigo Alcántara, Concha Fernández-Lorenzo and Joaquin Martín-Calleja
10.1 Introduction 358
10.2 Low Doping on Pb Sites 359
10.2.1 Materials and Methods 359
10.2.1.1 Experimental 359
10.2.1.2 Computational Details 361
10.2.2 Properties of the Perovskite Prepared 362
10.2.2.1 XRD 362
10.2.2.2 Diffuse Reflectance UV-Vis Spectroscopy 365
10.2.2.3 X-Ray Photoelectron Spectroscopy 366
10.2.2.4 SEM and Cathodoluminescence 369
10.2.3 Theoretical Analysis 371
10.2.3.1 Structure and Local Geometry 371
10.2.3.2 DOS and PDOS Analysis 372
10.2.3.3 ELF Analysis 376
10.3 High Doping on Pb Sites 378
10.3.1 Properties of the Perovskite Prepared 379
10.3.1.1 XRD 379
10.3.1.2 Diffuse Reflectance UV-Vis Spectroscopy 384
10.3.1.3 X-Ray Photoelectron Spectroscopy 386
10.3.2 Theoretical Analysis 388
10.3.2.1 Structure and Local Geometry 388
10.3.2.2 Electron Localization Function 391
10.3.2.3 DOS and PDOS Analysis 393
10.4 Conclusions 397
References 397
Part 4 Organic Solar Cells 401
11 Increasing the Dielectric Constant of Organic Materials for Photovoltaics 403
Viktor Ivasyshyn, Gang Ye, Sylvia Rousseva, Jan C. Hummelen and Ryan C. Chiechi
11.1 Introduction 404
11.2 Increasing the Dielectric Constant 415
11.2.1 Methodology of Dielectric Constant Measurement 415
11.2.2 High Dielectric Constant Materials 421
11.2.2.1 High Dielectric Constant Donor Materials 422
11.2.2.2 High Dielectric Constant Acceptor Materials 429
11.3 Conclusions and Outlook 435
References 436
12 Recent Developments in Dye-Sensitized Solar Cells and Potential Applications 443
Devender Singh, Raman Kumar Saini and Shri Bhagwan
12.1 Solar Energy and Solar Cells 444
12.2 Types of Solar Cells 445
12.2.1 First-Generation Photovoltaic Cells 445
12.2.1.1 Silicon Single-Crystal-Based Solar Cells 445
12.2.1.2 Polycrystalline Silicon Based Solar Cells 445
12.2.1.3 Gallium Arsenide (GaAs)-Based Solar Cells 447
12.2.2 Second-Generation Photovoltaic Cells 447
12.2.2.1 Amorphous Silicon (a-Si)-Based Solar Cells 447
12.2.2.2 Cadmium Telluride (CdTe)-Based Solar Cells 448
12.2.2.3 Copper Indium Diselenide (CuInSe2, or CIS)- Based Solar Cells 448
12.2.3 Third-Generation Photovoltaic Cells 449
12.2.3.1 Copper Zinc Tin Sulfide (CZTS) and (Its Derivatives) CZTSSe and CZTSe Solar Cells 449
12.2.3.2 Organic Solar Cells 449
12.2.3.3 Perovskite Solar Cells 450
12.2.3.4 Quantum Dot Solar Cell 450
12.3 Dye-Sensitized Solar Cells (DSSCs) 450
12.4 Operation of DSSCs 452
12.4.1 Working System of DSSCs 454
12.5 Fabrication of DSSCs 455
12.5.1 Substrate Selection and Preparation 456
12.5.1.1 Cutting of the Substrate 456
12.5.1.2 Cleaning of the Substrate 456
12.5.1.3 Masking of the Substrate 456
12.5.2 Film Deposition on Substrate 456
12.5.2.1 Preparation of TiO2 Paste 459
12.5.2.2 Depositing the TiO2 Layer on the Glass Plate 460
12.5.3 Dye Impregnation on the Electrode 460
12.5.4 Preparation of Counter Electrode 460
12.6 Various Materials Used as Essential Components of DSSCs 461
12.6.1 Transparent Conducting Substrate 461
12.6.2 Photoelectrodes 462
12.6.2.1 Titanium Oxide (TiO2) 462
12.6.2.2 Zinc Oxide (ZnO) 463
12.6.2.3 Niobium Pentoxide (Nb2O5) 464
12.6.2.4 Ternary Photoelectrode Materials 465
12.6.2.5 Other Metal Oxides 465
12.6.3 Photosensitizers 466
12.6.3.1 Metal Complexes as Sensitizers 467
12.6.4 Electrolytes 471
12.6.4.1 Liquid Electrolytes 472
12.6.4.2 Solid-State Electrolytes 473
12.6.4.3 Quasi-Solid Electrolyte 474
12.6.5 Counter Electrodes 474
12.6.5.1 Platinized Conducting Glass 474
12.6.5.2 Carbon Materials 474
12.6.5.3 Conducting Polymers 475
12.7 Advantages and Applications of DSSC 475
12.8 Future Prospect of DSSC 476
12.9 Conclusions 476
References 477
13 Heterojunction Energetics and Open-Circuit Voltages of Organic Photovoltaic Cells 487
Peicheng Li and Zheng-Hong Lu
13.1 Introduction 487
13.2 Ultraviolet Photoemission Spectroscopy 490
13.3 Energy Level Alignment at Heterojunction Interfaces 493
13.3.1 Schottky Barrier, Interfacial Dipole, and Slope Parameter 493
13.3.2 Interfacial Dipole Theory 495
13.3.3 Mapping Energy Level Alignment at Heterojunction Interface 497
13.4 Open-Circuit Voltage of Organic Photovoltaic Cell 499
13.4.1 Two-Diode Model 499
13.4.2 Quasi Fermi Level Model 501
13.4.3 Chemical Equilibrium Model 503
13.4.4 Kinetic Hopping Model 504
References 508
14 Plasma-Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices 511
Andrey Kosarev, Ismael Cosme, Svetlana Mansurova, Dmitriy Andronikov, Alexey Abramov and Eugeny Terukov
14.1 Introduction 512
14.2 Experimental 513
14.2.1 Fabrication of PECVD Materials 513
14.2.2 Fabrication of Organic Materials 514
14.2.3 Configurations and Fabrication of Device Structures 516
14.2.4 Characterization of Materials 516
14.2.5 Characterization of Device Structures 521
14.3 Material Results 522
14.3.1 Structure and Composition 522
14.3.2 Optical Properties 526
14.3.3 Electrical Properties 529
14.4 Results for Devices 537
14.4.1 Devices Based on PECVD Materials 537
14.4.2 Devices Based on Organic Materials 538
14.4.3 Hybrid Devices Based on PECVD-Polymer Materials 540
14.4.4 Hybrid Devices Using Crystalline Semicinductors, Non-Crystalline PECVD, and Organic Materials (HJT-OS Structures) 543
14.5 Outlook 546
Acknowledgment 546
References 546
Part 5 Nano-Photovoltaics 551
15 Use of Carbon Nanotubes (CNTs) in Third-Generation Solar Cells 553
LePing Yu, Munkhbayar Batmunkh, Cameron Shearer and Joseph G. Shapter
15.1 Introduction 554
15.1.1 Energy Issues and Potential Solutions 554
15.1.2 Categories of Photovoltaic Devices and Their Development 554
15.2 Carbon Nanotubes (CNTs) 556
15.3 Transparent Conducting Electrodes (TCEs) 556
15.3.1 ITO and FTO 556
15.3.2 CNTs for TCEs 557
15.4 Dye-Sensitized Solar Cells (DSSCs) 563
15.4.1 CNTs-TCFs for DSSCs 563
15.4.2 Semiconducting Layers 565
15.4.2.1 Nanostructured TiO2 Materials 565
15.4.2.2 Semiconducting Layers with CNTs 566
15.4.3 Catalyst Layers 570
15.4.3.1 Platinum (Pt) and Other Catalysts 570
15.5 CNTs in Perovskite Solar Cells 572
15.6 Carbon Nanotube-Silicon (CNT-Si) or Nanotube-Silicon Heterojunction (NSH) Solar Cells 575
15.6.1 Working Mechanism 575
15.6.2 Development of Si-CNT Devices 576
15.6.3 Origin of Photocurrent 577
15.6.4 Effect of the Number of CNT Walls 578
15.6.5 Effect of the Electronic Type of CNTs 579
15.6.6 Effect of CNT Alignment in the Electrode 579
15.6.7 Effect of the Transmittance/Thickness of CNT Films 580
15.6.8 Effect of Doping 580
15.6.9 Intentional Addition of Silicon Oxide Layer 581
15.6.10 Enhancement of Light Absorption 582
15.6.11 Application of Conductive Polymers 584
15.6.12 Discussion 584
15.7 Outlook and Conclusion 585
References 586
16 Quantum Dot Solar Cells 611
Xiaoli Zhao, Chengjie Xiang, Ming Huang, Mei Ding, Chuankun Jia and Lidong Sun
16.1 Introduction 612
16.2 Quantum Dots and Their Properties 612
16.2.1 Fundamental Concepts 612
16.2.2 Size-Dependent Quantum Confinement Effect 613
16.2.3 Multiple Exciton Generation Effect 614
16.2.4 The Kondo Effect 616
16.2.5 Applications 617
16.3 Synthetic Methods for Quantum Dots 618
16.3.1 Hot Injection 618
16.3.1.1 Theoretical Evaluation of Nucleation and Growth 619
16.3.1.2 Influence Factors 621
16.3.1.3 Features 623
16.3.2 Chemical Bath Deposition 624
16.3.2.1 Theoretical Evaluation of the CBD Method 625
16.3.2.2 Influence Factors 625
16.3.2.3 Features 627
16.3.3 Successive Ionic Layer Adsorption and Reaction 628
16.3.3.1 Theoretical Evaluation of SILAR Method 629
16.3.3.2 Influence Factors 630
16.3.3.3 Features 632
16.4 Quantum Dot Solar Cells 633
16.4.1 Schottky Junction Solar Cells 633
16.4.1.1 Device Structure 633
16.4.1.2 Preparation Route 635
16.4.1.3 Materials Selection 635
16.4.1.4 Photovoltaic Performance 636
16.4.2 Depleted Heterojunction Solar Cells 637
16.4.2.1 Device Structure 637
16.4.2.2 Preparation Route 638
16.4.2.3 Materials Selection 639
16.4.2.4 Photovoltaic Performance 640
16.4.3 Quantum-Dot-Sensitized Solar Cells 641
16.4.3.1 Device Structure 641
16.4.3.2 Preparation Route 642
16.4.3.3 Materials Selection 643
16.4.3.4 Photovoltaic Performance 644
16.4 Challenges and Perspectives 645
References 646
17 Near-Infrared Responsive Quantum Dot Photovoltaics Progress, Challenges, and Perspectives 659
Ru Zhou, Jun Xu and Jinzhang Xu
17.1 Introduction 660
17.2 Physical and Chemical Properties 662
17.2.1 Multiple Exciton Generation 662
17.2.2 Quantum Size Effect 663
17.2.3 Other Features 664
17.3 Materials and Film Processing 665
17.3.1 In Situ Strategy 665
17.3.2 Ex Situ Strategy 666
17.3.3 A Comparison between In Situ and Ex Situ 667
17.4 NIR Responsive QDs and Photovoltaic Performance 669
17.4.1 Binary Lead Chalcogenides 669
17.4.2 Binary Silver Chalcogenides 674
17.4.3 Ternary Indium-Based Chalcogenides 676
17.4.4 Ternary and Quaternary Alloyed Compounds 678
17.5 Strategies for Performance Enhancement 682
17.5.1 Light Management 682
17.5.1.1 Nanophotonic Structuring 682
17.5.1.2 Plasmonic Enhancement 683
17.5.2 Carrier Management 684
17.5.2.1 Band Structure Tailoring 684
17.5.2.2 Surface Engineering 687
17.5.2.3 Charge Collection Optimizing 692
17.6 New Concept Solar Cells 692
17.6.1 Multiple-Junction CQD Solar Cells 693
17.6.2 Flexible Solar Cells 694
17.6.3 Semitransparent Solar Cells 694
17.6.4 QD/Perovskite Hybrid Solar Cells 696
17.7 Conclusions and Perspectives 699
Acknowledgments 701
References 701
Part 6 Concentrator Photovoltaics and Analysis Models 719
18 Dense-Array Concentrator Photovoltaic System 721
Kok-Keong Chong, Chee-Woon Wong, Tiong-Keat Yew, Ming-Hui Tan and Woei-Chong Tan
18.1 Introduction 722
18.2 Primary Concentrator Non-Imaging Dish Concentrator 722
18.2.1 Geometry of Non-Imaging Dish Concentrator (NIDC) 723
18.2.2 Methodology of Designing NIDC Geometry 726
18.2.3 Coordinate Transformation of Facet Mirror 728
18.2.4 Computational Algorithm 730
18.3 Secondary Concentrator An Array of Crossed Compound Parabolic Concentrator (CCPC) Lenses 733
18.4 Concentrator Photovoltaic Module 740
18.5 Prototype of Dense-Array Concentrator Photovoltaic System (DACPV) 742
18.6 Optical Efficiency of the CCPC Lens 744
18.7 Experimental Study of Electrical Performance 750
18.7.1 Current Measurement Circuit 754
18.8 Cost Estimation of the Dense-Array Concentrator Photovoltaic System Using Two-Stage Non-Imaging Concentrators 757
18.9 Conclusion 758
Acknowledgments 759
References 760
19 Solar Radiation Analysis Model and PVsyst Simulation for Photovoltaic System Design 763
Figen Balo and Lutfu S. Sua
19.1 Introduction 764
19.1.1 Solar Energy in Turkey 764
19.1.2 Climate, Solar Energy Potential, and Electric Production in Erzincan 766
19.2 Data Analysis Model for Solar Radiation Intensity Calculation 768
19.2.1 Horizontal Surface 768
19.2.1.1 Daily Total Solar Radiation 768
19.2.1.2 Daily Diffuse Solar Radiation 768
19.2.1.3 Momentary Total Solar Radiation 769
19.2.1.4 Momentary Diffuse and Direct Solar Radiation 769
19.2.2 Calculating Solar Radiation Intensity on Inclined Surface 770
19.2.2.1 Momentary Direct Solar Radiation 770
19.2.2.2 Momentary Diffuse Solar Radiation 770
19.2.2.3 Reflecting Momentary Solar Radiation 771
19.2.2.4 Total Momentary Solar Radiation 771
19.2.3 Data Analysis and Discussion 771
19.3 PVsyst Simulation for the Solar Farm System Design 777
19.3.1 Methodology 777
19.3.2 Findings Obtained with PVsyst Simulation 781
19.4 Conclusions 783
References 784
Index 787