The global cancer vaccines market size reached US$ 6.8 Billion in 2023. Looking forward, the publisher expects the market to reach US$ 16.7 Billion by 2032, exhibiting a growth rate (CAGR) of 10.5% during 2023-2032. The increasing cancer incidence, advancements in immunotherapy, government initiatives and funding, growing awareness and education, rapid technological advancements, strategic collaborations and partnerships, and increasing healthcare expenditure are some of the major factors propelling the market.
Cancer vaccines are a type of immunotherapy designed to stimulate the body's immune system to recognize and attack cancer cells. These vaccines work by training the immune system to recognize specific cancer-related antigens, substances found on cancer cells that can trigger an immune response. By introducing these antigens into the body, cancer vaccines aim to activate the immune system's natural defense mechanisms against cancer. There are two main types of cancer vaccines, namely preventive (prophylactic) and therapeutic vaccines. Preventive cancer vaccines are used to prevent certain types of cancer caused by infectious agents, such as human papillomavirus (HPV) or hepatitis B virus (HBV). These vaccines stimulate the immune system to produce an immune response against the infectious agent, reducing the risk of developing associated cancers. Therapeutic cancer vaccines, on the other hand, are designed to treat existing cancers. They work by boosting the immune response against cancer cells, either by introducing cancer-specific antigens or by enhancing the immune system's recognition of these antigens. These vaccines can be personalized, targeting specific antigens present in an individual patient's tumor cells.
The rising prevalence of cancer worldwide is a significant driver for the cancer vaccines market. With cancer being a leading cause of mortality, there is a growing demand for effective preventive and therapeutic interventions. Additionally, immunotherapy, including cancer vaccines, has emerged as a promising treatment approach in oncology. The development of novel immunotherapeutic strategies and the success of existing immunotherapies have propelled the demand for cancer vaccines. Other than this, there is a rising awareness among the general population about the importance of cancer prevention and early detection. Increased education campaigns, screening programs, and public awareness initiatives have resulted in a greater demand for preventive measures, including cancer vaccines. Besides this, the market has witnessed collaborations between pharmaceutical companies, research institutes, and academic institutions. These partnerships facilitate the exchange of knowledge, resources, and expertise, leading to accelerated development and commercialization of cancer vaccines. In line with this, the growing healthcare expenditure, particularly in emerging economies, has boosted the accessibility and affordability of cancer vaccines. Rising disposable incomes, improving healthcare infrastructure, and expanding insurance coverage are contributing to market growth. Moreover, governments across the globe are actively investing in cancer research and development, including vaccines, which is creating a positive market outlook.
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to target and destroy cancer cells. The success of immunotherapeutic approaches, including checkpoint inhibitors and adoptive cell therapies, has created a strong foundation for the development and adoption of cancer vaccines. The ability of cancer vaccines to stimulate a specific immune response against tumor antigens further complements existing immunotherapy strategies. This synergy has fueled the demand for cancer vaccines as an integral part of combination therapies, leading to their market growth.
Government initiatives and funding
Governments worldwide have recognized the urgent need to address the growing burden of cancer. As a result, they are actively investing in cancer research, development, and healthcare infrastructure. Governments provide financial support, grants, and incentives to companies engaged in cancer vaccine research and development. Additionally, regulatory agencies are working closely with vaccine developers to streamline approval processes and facilitate market access. These supportive policies and funding initiatives have significantly contributed to the growth of the market, enabling companies to invest in research, clinical trials, and manufacturing capabilities.
Growing awareness and education
Increased awareness among the general population about cancer prevention and early detection has had a profound impact on the demand for cancer vaccines. Public health campaigns, educational programs, and initiatives by advocacy groups have emphasized the importance of vaccinations as a preventive measure against certain cancers. The success of preventive vaccines for infections linked to cancer, such as HPV and HBV vaccines, has further reinforced the significance of cancer vaccines. As people become more knowledgeable about the benefits of cancer prevention and immunization, the demand for cancer vaccines is expected to increase, thus driving market growth.
Therapeutic Cancer Vaccines
Preventive cancer vaccines dominate the market
The report has provided a detailed breakup and analysis of the market based on the type. This includes preventive cancer vaccines and therapeutic cancer vaccines. According to the report, preventive cancer vaccines represented the largest segment.
Preventive cancer vaccines have demonstrated significant success in reducing the incidence of specific cancers associated with infectious agents. Vaccines, such as the human papillomavirus (HPV) and hepatitis B virus (HBV), have proven effective in preventing cervical, anal, and certain types of liver cancer, respectively. The efficacy and safety of these vaccines have led to their widespread acceptance. Additionally, these vaccines offer a proactive approach to cancer prevention. They target specific infectious agents known to contribute to the development of certain cancers, thereby providing a direct means of prevention. This approach is especially appealing as it focuses on reducing the risk of developing cancer in the first place, rather than solely relying on early detection or treatment interventions. As public awareness of the benefits of preventive measures increases, individuals and healthcare providers are embracing the use of preventive cancer vaccines, thus contributing to the segment's market dominance. Other than this, preventive cancer vaccines align with global efforts to reduce the burden of cancer. Moreover, governments and healthcare organizations across the world have recognized the value of prevention in combating cancer and have implemented vaccination programs as part of their public health initiatives. These programs target specific populations, such as adolescents for HPV vaccination, to maximize the preventive impact. The extensive implementation of national immunization programs and the inclusion of preventive cancer vaccines in routine vaccination schedules further drive the market segment.
Recombinant Cancer Vaccines
Antigen/Adjuvant Cancer Vaccines
Viral Vector and DNA Cancer Vaccines
Whole-cell Cancer Vaccines
Recombinant cancer vaccines hold the largest share in the market
A detailed breakup and analysis of the market based on technology has also been provided in the report. This includes dendritic cells cancer vaccines, recombinant cancer vaccines, antigen/adjuvant cancer vaccines, viral vector and DNA cancer vaccines, and whole-cell cancer vaccines. According to the report, recombinant cancer vaccines accounted for the largest market share.
Recombinant technology allows for precise and controlled production of cancer vaccines. These vaccines are developed by inserting specific genes or DNA sequences encoding tumor antigens into a vector such as a virus or bacteria. This genetic engineering technique enables researchers to create vaccines that express tumor-specific antigens, effectively targeting cancer cells while minimizing potential side effects. The ability to tailor the vaccine's composition and antigen profile to match the specific characteristics of a patient's tumor makes recombinant cancer vaccines highly customizable and attractive in personalized medicine approaches. Additionally, recombinant vaccines have demonstrated favorable safety and efficacy profiles. The use of recombinant technology allows for the production of vaccines without using live or attenuated pathogens, reducing the risk of adverse events. Additionally, recombinant vaccines can induce a robust immune response by presenting tumor-specific antigens to the immune system in a controlled manner. This targeted immune response enhances the vaccine's efficacy in recognizing and attacking cancer cells. Other than this, this technology offers scalability and cost-effectiveness in vaccine production. The use of recombinant techniques allows for efficient large-scale production of vaccines, thus meeting the demand for widespread vaccination programs.
Prostate Cancer
Others
The report has provided a detailed breakup and analysis of the market based on the indication. This includes cervical cancer, prostate cancer, and others.
Cervical cancer is primarily caused by persistent infection with high-risk types of human papillomavirus (HPV). Vaccines targeting HPV have been successful in preventing cervical cancer. The market for cervical cancer vaccines is driven by the increasing awareness about the role of HPV in cervical cancer development, along with the implementation of national vaccination programs. Vaccines, such as Gardasil and Cervarix, have been developed specifically to prevent HPV infection and subsequent development of cervical cancer. These vaccines have shown remarkable efficacy in preventing HPV infections and reducing the incidence of cervical precancerous lesions. The market segment for cervical cancer vaccines is expected to grow as vaccination rates improve and more countries include HPV vaccination in their immunization programs.
Prostate cancer is the most common cancer among men, and the demand for effective treatment options is high. Vaccines targeting prostate cancer work by stimulating the immune system to recognize and attack prostate cancer cells. Sipuleucel-T (Provenge) is an example of an FDA-approved therapeutic vaccine for advanced prostate cancer. It is designed to boost the patient's immune response against prostate cancer cells. The market for prostate cancer vaccines is driven by the need for innovative treatment options that can improve overall survival and quality of life for patients. Additionally, the rising prevalence of prostate cancer, especially in aging population, contributes to the market growth. Moreover, ongoing research and clinical trials developing new prostate cancer vaccines, is further enhancing the potential of this market segment.
Adults
A detailed breakup and analysis of the market based on the end user has also been provided in the report. This includes pediatrics and adults.
Pediatric patients, including infants, children, and adolescents, represent a crucial target population for cancer vaccines. Vaccination in pediatrics aims to prevent cancers associated with infectious agents, such as cervical cancer caused by HPV or liver cancer caused by HBV. Vaccinating children and adolescents against these infections can provide long-term protection and reduce the risk of developing associated cancers in adulthood. Government immunization programs and initiatives aimed at promoting pediatric vaccination have been instrumental in driving the market growth. Other than this, the demand for pediatric cancer vaccines is expected to increase with the increasing awareness about the benefits of early prevention and vaccination.
While pediatric vaccination focuses on preventing cancers in early stages of life, adult vaccination targets both preventive and therapeutic purposes. In terms of prevention, adult cancer vaccines primarily aim to protect against infectious agents that contribute to certain cancers, such as HPV-associated cancers, HBV-related liver cancer, and human immunodeficiency virus (HIV)-associated cancers. Additionally, therapeutic vaccines targeting specific antigens expressed by cancer cells are being developed for adult patients. These therapeutic vaccines are designed to stimulate the immune system and enhance the body's ability to recognize and attack cancer cells. The market for adult cancer vaccines is driven by the growing emphasis on preventive healthcare, increasing awareness regarding vaccination benefits in adults, and advancements in therapeutic vaccine research and development.
United States
Canada
Asia-Pacific
China
Japan
India
South Korea
Australia
Indonesia
Others
Europe
Germany
France
United Kingdom
Italy
Spain
Russia
Others
Latin America
Brazil
Mexico
Others
Middle East and Africa
North America exhibits a clear dominance in the market
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.
North America has a well-developed healthcare infrastructure and advanced research capabilities. The region is home to numerous leading pharmaceutical and biotechnology companies, academic institutions, and research centers specializing in cancer research. This robust ecosystem fosters innovation, enabling the development and commercialization of cutting-edge cancer vaccines. The presence of well-established regulatory frameworks and stringent quality standards further supports the growth of the market in North America. Additionally, there is a high prevalence of cancer in this region, which is accelerating the adoption of effective treatment options, including cancer vaccines. The region experiences a significant burden of various cancers, such as lung, breast, prostate, and colorectal cancers. This increased incidence of cancer creates a substantial market opportunity for cancer vaccines as patients and healthcare providers seek novel therapies for prevention, treatment, and improved patient outcomes. Other than this, North America has a strong emphasis on preventive healthcare and vaccination programs. The region's healthcare systems prioritize disease prevention and public health initiatives, including immunization campaigns. Moreover, vaccination against infectious agents associated with certain cancers, such as HPV and HBV, is actively promoted, leading to a higher uptake of preventive cancer vaccines.
Dendreon Pharmaceuticals LLC
Dynavax Technologies Corporation
GSK plc
Merck & Co. Inc.
Moderna Inc.
OSE Immunotherapeutics
Providence Therapeutics
Sanofi S.A.
UbiVac Inc.
Vaccitech PLC
In October 2023, Merck announced that it will be jointly developing and commercializing mRNA-4157/V940 with Moderna. Moderna Inc. has been making recent developments in the cancer vaccines industry by working on mRNA vaccines for cancer treatment.
In 2023, OSE Immunotherapeutics is developing a cancer vaccine called Tedopi, which is the first cancer vaccine to demonstrate clinically meaningful efficacy results, along with a better safety and quality of life profile. It is currently in late-stage clinical development for lung cancer. The Phase 3 results of Tedopi have shown promising outcomes in the field of Immuno-Oncology. Additionally, a new patent has been granted to protect Tedopi as a therapeutic cancer vaccine.
2. What is the expected growth rate of the global cancer vaccines market during 2024-2032?
3. What are the key factors driving the global cancer vaccines market?
4. What has been the impact of COVID-19 on the global cancer vaccines market?
5. What is the breakup of the global cancer vaccines market based on the type?
6. What is the breakup of the global cancer vaccines market based on the technology?
7. What are the key regions in the global cancer vaccines market?
8. Who are the key players/companies in the global cancer vaccines market?
Cancer vaccines are a type of immunotherapy designed to stimulate the body's immune system to recognize and attack cancer cells. These vaccines work by training the immune system to recognize specific cancer-related antigens, substances found on cancer cells that can trigger an immune response. By introducing these antigens into the body, cancer vaccines aim to activate the immune system's natural defense mechanisms against cancer. There are two main types of cancer vaccines, namely preventive (prophylactic) and therapeutic vaccines. Preventive cancer vaccines are used to prevent certain types of cancer caused by infectious agents, such as human papillomavirus (HPV) or hepatitis B virus (HBV). These vaccines stimulate the immune system to produce an immune response against the infectious agent, reducing the risk of developing associated cancers. Therapeutic cancer vaccines, on the other hand, are designed to treat existing cancers. They work by boosting the immune response against cancer cells, either by introducing cancer-specific antigens or by enhancing the immune system's recognition of these antigens. These vaccines can be personalized, targeting specific antigens present in an individual patient's tumor cells.
The rising prevalence of cancer worldwide is a significant driver for the cancer vaccines market. With cancer being a leading cause of mortality, there is a growing demand for effective preventive and therapeutic interventions. Additionally, immunotherapy, including cancer vaccines, has emerged as a promising treatment approach in oncology. The development of novel immunotherapeutic strategies and the success of existing immunotherapies have propelled the demand for cancer vaccines. Other than this, there is a rising awareness among the general population about the importance of cancer prevention and early detection. Increased education campaigns, screening programs, and public awareness initiatives have resulted in a greater demand for preventive measures, including cancer vaccines. Besides this, the market has witnessed collaborations between pharmaceutical companies, research institutes, and academic institutions. These partnerships facilitate the exchange of knowledge, resources, and expertise, leading to accelerated development and commercialization of cancer vaccines. In line with this, the growing healthcare expenditure, particularly in emerging economies, has boosted the accessibility and affordability of cancer vaccines. Rising disposable incomes, improving healthcare infrastructure, and expanding insurance coverage are contributing to market growth. Moreover, governments across the globe are actively investing in cancer research and development, including vaccines, which is creating a positive market outlook.
Cancer Vaccines Market Trends/Drivers:
Advancements in immunotherapyImmunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to target and destroy cancer cells. The success of immunotherapeutic approaches, including checkpoint inhibitors and adoptive cell therapies, has created a strong foundation for the development and adoption of cancer vaccines. The ability of cancer vaccines to stimulate a specific immune response against tumor antigens further complements existing immunotherapy strategies. This synergy has fueled the demand for cancer vaccines as an integral part of combination therapies, leading to their market growth.
Government initiatives and funding
Governments worldwide have recognized the urgent need to address the growing burden of cancer. As a result, they are actively investing in cancer research, development, and healthcare infrastructure. Governments provide financial support, grants, and incentives to companies engaged in cancer vaccine research and development. Additionally, regulatory agencies are working closely with vaccine developers to streamline approval processes and facilitate market access. These supportive policies and funding initiatives have significantly contributed to the growth of the market, enabling companies to invest in research, clinical trials, and manufacturing capabilities.
Growing awareness and education
Increased awareness among the general population about cancer prevention and early detection has had a profound impact on the demand for cancer vaccines. Public health campaigns, educational programs, and initiatives by advocacy groups have emphasized the importance of vaccinations as a preventive measure against certain cancers. The success of preventive vaccines for infections linked to cancer, such as HPV and HBV vaccines, has further reinforced the significance of cancer vaccines. As people become more knowledgeable about the benefits of cancer prevention and immunization, the demand for cancer vaccines is expected to increase, thus driving market growth.
Cancer Vaccines Industry Segmentation:
The report provides an analysis of the key trends in each segment of the global cancer vaccines market report, along with forecasts at the global, regional and country levels from 2024-2032. Our report has categorized the market based on type, technology, indication and end user.Breakup by Type:
Preventive Cancer VaccinesTherapeutic Cancer Vaccines
Preventive cancer vaccines dominate the market
The report has provided a detailed breakup and analysis of the market based on the type. This includes preventive cancer vaccines and therapeutic cancer vaccines. According to the report, preventive cancer vaccines represented the largest segment.
Preventive cancer vaccines have demonstrated significant success in reducing the incidence of specific cancers associated with infectious agents. Vaccines, such as the human papillomavirus (HPV) and hepatitis B virus (HBV), have proven effective in preventing cervical, anal, and certain types of liver cancer, respectively. The efficacy and safety of these vaccines have led to their widespread acceptance. Additionally, these vaccines offer a proactive approach to cancer prevention. They target specific infectious agents known to contribute to the development of certain cancers, thereby providing a direct means of prevention. This approach is especially appealing as it focuses on reducing the risk of developing cancer in the first place, rather than solely relying on early detection or treatment interventions. As public awareness of the benefits of preventive measures increases, individuals and healthcare providers are embracing the use of preventive cancer vaccines, thus contributing to the segment's market dominance. Other than this, preventive cancer vaccines align with global efforts to reduce the burden of cancer. Moreover, governments and healthcare organizations across the world have recognized the value of prevention in combating cancer and have implemented vaccination programs as part of their public health initiatives. These programs target specific populations, such as adolescents for HPV vaccination, to maximize the preventive impact. The extensive implementation of national immunization programs and the inclusion of preventive cancer vaccines in routine vaccination schedules further drive the market segment.
Breakup by Technology:
Dendritic Cells Cancer VaccinesRecombinant Cancer Vaccines
Antigen/Adjuvant Cancer Vaccines
Viral Vector and DNA Cancer Vaccines
Whole-cell Cancer Vaccines
Recombinant cancer vaccines hold the largest share in the market
A detailed breakup and analysis of the market based on technology has also been provided in the report. This includes dendritic cells cancer vaccines, recombinant cancer vaccines, antigen/adjuvant cancer vaccines, viral vector and DNA cancer vaccines, and whole-cell cancer vaccines. According to the report, recombinant cancer vaccines accounted for the largest market share.
Recombinant technology allows for precise and controlled production of cancer vaccines. These vaccines are developed by inserting specific genes or DNA sequences encoding tumor antigens into a vector such as a virus or bacteria. This genetic engineering technique enables researchers to create vaccines that express tumor-specific antigens, effectively targeting cancer cells while minimizing potential side effects. The ability to tailor the vaccine's composition and antigen profile to match the specific characteristics of a patient's tumor makes recombinant cancer vaccines highly customizable and attractive in personalized medicine approaches. Additionally, recombinant vaccines have demonstrated favorable safety and efficacy profiles. The use of recombinant technology allows for the production of vaccines without using live or attenuated pathogens, reducing the risk of adverse events. Additionally, recombinant vaccines can induce a robust immune response by presenting tumor-specific antigens to the immune system in a controlled manner. This targeted immune response enhances the vaccine's efficacy in recognizing and attacking cancer cells. Other than this, this technology offers scalability and cost-effectiveness in vaccine production. The use of recombinant techniques allows for efficient large-scale production of vaccines, thus meeting the demand for widespread vaccination programs.
Breakup by Indication:
Cervical CancerProstate Cancer
Others
The report has provided a detailed breakup and analysis of the market based on the indication. This includes cervical cancer, prostate cancer, and others.
Cervical cancer is primarily caused by persistent infection with high-risk types of human papillomavirus (HPV). Vaccines targeting HPV have been successful in preventing cervical cancer. The market for cervical cancer vaccines is driven by the increasing awareness about the role of HPV in cervical cancer development, along with the implementation of national vaccination programs. Vaccines, such as Gardasil and Cervarix, have been developed specifically to prevent HPV infection and subsequent development of cervical cancer. These vaccines have shown remarkable efficacy in preventing HPV infections and reducing the incidence of cervical precancerous lesions. The market segment for cervical cancer vaccines is expected to grow as vaccination rates improve and more countries include HPV vaccination in their immunization programs.
Prostate cancer is the most common cancer among men, and the demand for effective treatment options is high. Vaccines targeting prostate cancer work by stimulating the immune system to recognize and attack prostate cancer cells. Sipuleucel-T (Provenge) is an example of an FDA-approved therapeutic vaccine for advanced prostate cancer. It is designed to boost the patient's immune response against prostate cancer cells. The market for prostate cancer vaccines is driven by the need for innovative treatment options that can improve overall survival and quality of life for patients. Additionally, the rising prevalence of prostate cancer, especially in aging population, contributes to the market growth. Moreover, ongoing research and clinical trials developing new prostate cancer vaccines, is further enhancing the potential of this market segment.
Breakup by End User:
PediatricsAdults
A detailed breakup and analysis of the market based on the end user has also been provided in the report. This includes pediatrics and adults.
Pediatric patients, including infants, children, and adolescents, represent a crucial target population for cancer vaccines. Vaccination in pediatrics aims to prevent cancers associated with infectious agents, such as cervical cancer caused by HPV or liver cancer caused by HBV. Vaccinating children and adolescents against these infections can provide long-term protection and reduce the risk of developing associated cancers in adulthood. Government immunization programs and initiatives aimed at promoting pediatric vaccination have been instrumental in driving the market growth. Other than this, the demand for pediatric cancer vaccines is expected to increase with the increasing awareness about the benefits of early prevention and vaccination.
While pediatric vaccination focuses on preventing cancers in early stages of life, adult vaccination targets both preventive and therapeutic purposes. In terms of prevention, adult cancer vaccines primarily aim to protect against infectious agents that contribute to certain cancers, such as HPV-associated cancers, HBV-related liver cancer, and human immunodeficiency virus (HIV)-associated cancers. Additionally, therapeutic vaccines targeting specific antigens expressed by cancer cells are being developed for adult patients. These therapeutic vaccines are designed to stimulate the immune system and enhance the body's ability to recognize and attack cancer cells. The market for adult cancer vaccines is driven by the growing emphasis on preventive healthcare, increasing awareness regarding vaccination benefits in adults, and advancements in therapeutic vaccine research and development.
Breakup by Region:
North AmericaUnited States
Canada
Asia-Pacific
China
Japan
India
South Korea
Australia
Indonesia
Others
Europe
Germany
France
United Kingdom
Italy
Spain
Russia
Others
Latin America
Brazil
Mexico
Others
Middle East and Africa
North America exhibits a clear dominance in the market
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.
North America has a well-developed healthcare infrastructure and advanced research capabilities. The region is home to numerous leading pharmaceutical and biotechnology companies, academic institutions, and research centers specializing in cancer research. This robust ecosystem fosters innovation, enabling the development and commercialization of cutting-edge cancer vaccines. The presence of well-established regulatory frameworks and stringent quality standards further supports the growth of the market in North America. Additionally, there is a high prevalence of cancer in this region, which is accelerating the adoption of effective treatment options, including cancer vaccines. The region experiences a significant burden of various cancers, such as lung, breast, prostate, and colorectal cancers. This increased incidence of cancer creates a substantial market opportunity for cancer vaccines as patients and healthcare providers seek novel therapies for prevention, treatment, and improved patient outcomes. Other than this, North America has a strong emphasis on preventive healthcare and vaccination programs. The region's healthcare systems prioritize disease prevention and public health initiatives, including immunization campaigns. Moreover, vaccination against infectious agents associated with certain cancers, such as HPV and HBV, is actively promoted, leading to a higher uptake of preventive cancer vaccines.
Competitive Landscape:
Key players are actively investing in research and development to advance the development of cancer vaccines. They are focused on identifying novel tumor antigens, optimizing vaccine formulations, and exploring innovative delivery systems. Healthcare companies are conducting extensive preclinical and clinical trials to demonstrate the safety, efficacy, and potential of their cancer vaccine candidates. These trials involve collaboration with healthcare institutions and involve a large patient population. By supervising rigorous clinical trials, they are gathering valuable data on the performance of their vaccines, demonstrating their efficacy, and paving the way for regulatory approvals and market entry. Other than this, key players are actively working on expanding market access for cancer vaccines. They are involved in obtaining regulatory approvals in various countries, ensuring manufacturing scalability, and establishing distribution networks. Companies are also focused on educating healthcare providers, patients, and the general public about the benefits of cancer vaccines. Marketing and promotional activities are carried out to create awareness, enhance adoption rates, and drive market growth. Besides this, they continue to invest in their product pipelines and drive innovation in the market by constantly exploring new vaccine candidates, improving existing formulations, and discovering novel approaches to enhance immune responses.The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:
Anixa Biosciences Inc.Dendreon Pharmaceuticals LLC
Dynavax Technologies Corporation
GSK plc
Merck & Co. Inc.
Moderna Inc.
OSE Immunotherapeutics
Providence Therapeutics
Sanofi S.A.
UbiVac Inc.
Vaccitech PLC
Recent Developments:
GSK Plc is actively involved in the development of cancer vaccines as part of its commitment to advancing healthcare. In 2022, the company invested £5.5 billion in R&D, 9% AER more than 2021, to enhance its pipeline of vaccines and medicines.In October 2023, Merck announced that it will be jointly developing and commercializing mRNA-4157/V940 with Moderna. Moderna Inc. has been making recent developments in the cancer vaccines industry by working on mRNA vaccines for cancer treatment.
In 2023, OSE Immunotherapeutics is developing a cancer vaccine called Tedopi, which is the first cancer vaccine to demonstrate clinically meaningful efficacy results, along with a better safety and quality of life profile. It is currently in late-stage clinical development for lung cancer. The Phase 3 results of Tedopi have shown promising outcomes in the field of Immuno-Oncology. Additionally, a new patent has been granted to protect Tedopi as a therapeutic cancer vaccine.
Key Questions Answered in This Report
1. How big is the global cancer vaccines market?2. What is the expected growth rate of the global cancer vaccines market during 2024-2032?
3. What are the key factors driving the global cancer vaccines market?
4. What has been the impact of COVID-19 on the global cancer vaccines market?
5. What is the breakup of the global cancer vaccines market based on the type?
6. What is the breakup of the global cancer vaccines market based on the technology?
7. What are the key regions in the global cancer vaccines market?
8. Who are the key players/companies in the global cancer vaccines market?
Table of Contents
1 Preface3 Executive Summary12 Value Chain Analysis14 Price Analysis
2 Scope and Methodology
4 Introduction
5 Global Cancer Vaccines Market
6 Market Breakup by Type
7 Market Breakup by Technology
8 Market Breakup by Indication
9 Market Breakup by End User
10 Market Breakup by Region
11 SWOT Analysis
13 Porters Five Forces Analysis
15 Competitive Landscape
List of Figures
List of Tables
Companies Mentioned
- Anixa Biosciences Inc.
- Dendreon Pharmaceuticals LLC
- Dynavax Technologies Corporation
- GSK plc
- Merck & Co. Inc.
- Moderna Inc.
- OSE Immunotherapeutics
- Providence Therapeutics
- Sanofi S.A.
- UbiVac Inc.
- Vaccitech plc
Methodology
LOADING...
Table Information
Report Attribute | Details |
---|---|
No. of Pages | 148 |
Published | July 2024 |
Forecast Period | 2023 - 2032 |
Estimated Market Value ( USD | $ 6.8 Billion |
Forecasted Market Value ( USD | $ 16.7 Billion |
Compound Annual Growth Rate | 10.5% |
Regions Covered | Global |
No. of Companies Mentioned | 11 |