Smart Technologies Based on Cross-industry Convergence Enhance the Efficiency of Waste Management Practices
The World Bank estimates that rapid population growth and urbanization have resulted in a global average waste generation of about 0.79 kilograms per citizen per day as of 2022. It predicts a direct relationship between waste generation and income levels and projects the daily per capita waste generation in high-income countries to increase by 19.0% by 2050 when compared to 2020 levels. Waste generation levels in developing and emerging economies are comparatively lower. However, the waste generation rate in these economies is estimated to increase by 40.0% by 2050 when compared to 2020 levels. The steady growth trajectory of waste generation will have detrimental implications on the environment, human health, and prosperity; therefore, it is necessary to improve waste collection and recycling rates to reduce the negative impact while extracting more valuable resources from waste to enable a circular economy.
The most efficient way of handling the growing waste problem is the adoption of SWM technologies that offer data intelligence and real-time insights into waste generation patterns. This enables waste operators to improve decision-making regarding waste collection operations, ultimately increasing collection and recycling rates. SWM technologies include the use of sensors, IoT, and robots to enable a smooth transition for cities to adopt data-driven waste collection, sorting, and recycling.
This study covers the following topics:
- Overview of SWM and current trends, along with factors driving the development and adoption of SWM technologies
- Major innovations and R&D activities in the utilization of SWM technologies
- Successful case studies based on the utilization of SWM technologies
- Patent landscape and growth opportunities enabling SWM technologies