+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

The Global Market for Bio- and CO2- based Plastics and Polymers

  • Report

  • 782 Pages
  • February 2023
  • Region: Global
  • Future Markets, Inc
  • ID: 5735489

Bio-based polymers are sustainable polymers synthesized from renewable resources such as biomass (e.g. plant waste, algae) rather than conventional petroleum feedstocks such as oil and gas. They offer significant advantages over traditional plastic 

CO2 demonstrates the potential to be a renewable and inexhaustible platform chemical for the synthesis of commodities (methanol, urea, (in)organic carbonates, formic acid), fuel (methane, alcanes) and polymers. R&D is progressing to produce polymers and high-value chemicals utilising CO2 as a feedstock. The technology transforms CO2 into polycarbonates such as polypropylene carbonate (PPC) and polyethylene carbonate (PEC) using catalysts in a reaction with an epoxide, a chemical compound used as a reagent. Polymers and plastics generated utilising CO2 include:

  1. Polymers incorporating CO2 directly into their structure, such as polycarbonates.
  2. Polymers formed from monomers created by the hydrogenation of CO2, such as ethylene and propylene.

A number of companies are currently operating polymer plants using CO2 as a raw material. For the production of polymers, the utilization potential of CO2 is estimated to be 10 to 50 Mt yr−1 in 2050.

Report contents include:

  • Analysis of the Global Bio-based and Biodegradable Plastics and Polymers market. 
  • Global production capacities, market demand and trends 2019-2033 for Bio-based and Biodegradable Plastics and Polymers.
  • Analysis of bio-based feedstock chemicals including:
    • Bio-based adipic acid
    • 11-Aminoundecanoic acid (11-AA)
    • 1,4-Butanediol (1,4-BDO)
    • Dodecanedioic acid (DDDA)
    • Epichlorohydrin (ECH)
    • Ethylene 
    • Furfural
    • 5-Chloromethylfurfural (5-CMF)
    • 5-Hydroxymethylfurfural (HMF) 
    • 2,5-Furandicarboxylic acid (2,5-FDCA)
    • Furandicarboxylic methyl ester (FDME)
    • Isosorbide 
    • Itaconic acid
    • 3-Hydroxypropionic acid (3-HP)
    • 5 Hydroxymethyl furfural (HMF)
    • Lactic acid (D-LA) 
    • Lactic acid - L-lactic acid (L-LA)
    • Lactide
    • Levoglucosenone
    • Levulinic acid
    • Monoethylene glycol (MEG)
    • Monopropylene glycol (MPG)
    • Muconic acid
    • Naphtha
    • Pentamethylene diisocyanate
    • 1,3-Propanediol (1,3-PDO)
    • Sebacic acid
    • Succinic acid (SA)
  • Analysis of synthetic Bio-based plastics and Polymers market including:
    • Polylactic acid (Bio-PLA)
    • Polyethylene terephthalate (Bio-PET)
    • Polytrimethylene terephthalate (Bio-PTT)
    • Polyethylene furanoate (Bio-PEF)
    • Polyamides (Bio-PA)
    • Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    • Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including
    • Polyhydroxyalkanoates (PHA)
    • Polysaccharides
    • Microfibrillated cellulose (MFC)
    • Cellulose nanocrystals
    • Cellulose nanofibers,
    • Protein-based bioplastics
    • Algal and fungal based bioplastics and biopolymers. 
  • Analysis of types of natural fibers including plant fibers, animal fibers including alternative leather, wool, silk fiber and down and polysaccharides. 
    • Markets for natural fibers, including polymer composites, aerospace, automotive, construction & building, sports & leisure, textiles, consumer products and plastics & packaging.
    • The market for lignin-based plastics and polymers.
    • Production capacities of lignin producers. 
    • In depth analysis of biorefinery lignin production. 
  • Market segmentation analysis for bio-based plastics and polymers. Markets analysed include rigid & flexible packaging, consumer goods, automotive, building & construction, textiles, electronics, agriculture & horticulture. 
  • Emerging technologies in synthetic and natural produced bio-based plastics and biopolymers. 
  • 492 company profiled including products and production capacities. Companies profiled include  NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF, AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Bioform Technologies, Algal Bio, Kraig Biocraft Laboratories, Biotic Circular Technologies Ltd., Full Cycle Bioplastics, Stora Enso Oyj, Spiber, Traceless Materials GmbH, CJ Biomaterials, Natrify, Plastus, Humble Bee Bio and many more. 
  • Analysis of the global market for carbon capture, utilization, and storage (CCUS) technologies.
  • Market developments, funding and investment in carbon capture, utilization, and storage (CCUS) 2020-2023.
  • Analysis of key market dynamics, trends, opportunities and factors influencing the global carbon, capture utilization & storage technologies market and its subsegments.
  • Latest developments in carbon capture, storage and utilization technologies
  • Market analysis of CO2-derived plastics and polymer products.
  • Profiles of 30 companies in CO2-dervied polymer and plastics products producers. Companies profiled include Algal Bio Co., Ltd., C4X Technologies Inc., Carbonova, CarbonMeta Research, Chiyoda Corporation, CERT Systems, Inc., Covestro A.G., Mars Materials and Twelve. 

This product will be delivered within 1-3 business days.

Table of Contents

1 RESEARCH METHODOLOGY

2 BIO-BASED CHEMICALS AND FEEDSTOCKS
2.1 Types
2.2 Production capacities
2.3 Bio-based adipic acid
2.3.1 Applications and production
2.4 11-Aminoundecanoic acid (11-AA)
2.4.1 Applications and production
2.5 1,4-Butanediol (1,4-BDO)
2.5.1 Applications and production
2.6 Dodecanedioic acid (DDDA)
2.6.1 Applications and production
2.7 Epichlorohydrin (ECH)
2.7.1 Applications and production
2.8 Ethylene
2.8.1 Applications and production
2.9 Furfural
2.9.1 Applications and production
2.10 5-Hydroxymethylfurfural (HMF)
2.10.1 Applications and production
2.11 5-Chloromethylfurfural (5-CMF)
2.11.1 Applications and production
2.12 2,5-Furandicarboxylic acid (2,5-FDCA)
2.12.1 Applications and production
2.13 Furandicarboxylic methyl ester (FDME)
2.14 Isosorbide
2.14.1 Applications and production
2.15 Itaconic acid
2.15.1 Applications and production
2.16 3-Hydroxypropionic acid (3-HP)
2.16.1 Applications and production
2.17 5 Hydroxymethyl furfural (HMF)
2.17.1 Applications and production
2.18 Lactic acid (D-LA)
2.18.1 Applications and production
2.19 Lactic acid - L-lactic acid (L-LA)
2.19.1 Applications and production
2.20 Lactide
2.20.1 Applications and production
2.21 Levoglucosenone
2.21.1 Applications and production
2.22 Levulinic acid
2.22.1 Applications and production
2.23 Monoethylene glycol (MEG)
2.23.1 Applications and production
2.24 Monopropylene glycol (MPG)
2.24.1 Applications and production
2.25 Muconic acid
2.25.1 Applications and production
2.26 Bio-Naphtha
2.26.1 Applications and production
2.26.2 Production capacities
2.26.3 Bio-naptha producers
2.27 Pentamethylene diisocyanate
2.27.1 Applications and production
2.28 1,3-Propanediol (1,3-PDO)
2.28.1 Applications and production
2.29 Sebacic acid
2.29.1 Applications and production
2.30 Succinic acid (SA)
2.30.1 Applications and production

3 BIO-BASED PLASTICS AND POLYMERS
3.1 Bio-based or renewable plastics
3.1.1 Drop-in bio-based plastics
3.1.2 Novel bio-based plastics
3.2 Biodegradable and compostable plastics
3.2.1 Biodegradability
3.2.2 Compostability
3.3 Advantages and disadvantages
3.4 Types of Bio-based and/or Biodegradable Plastics
3.5 Market leaders by biobased and/or biodegradable plastic types
3.6 Synthetic bio-based polymers
3.6.1 Polylactic acid (Bio-PLA)
3.6.1.1 Market analysis
3.6.1.2 Production
3.6.1.3 Producers and production capacities, current and planned
3.6.1.3.1 Lactic acid producers and production capacities
3.6.1.3.2 PLA producers and production capacities
3.6.1.3.3 Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)
3.6.2 Polyethylene terephthalate (Bio-PET)
3.6.2.1 Market analysis
3.6.2.2 Producers and production capacities
3.6.2.3 Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)
3.6.3 Polytrimethylene terephthalate (Bio-PTT)
3.6.3.1 Market analysis
3.6.3.2 Producers and production capacities
3.6.3.3 Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)
3.6.4 Polyethylene furanoate (Bio-PEF)
3.6.4.1 Market analysis
3.6.4.2 Comparative properties to PET
3.6.4.3 Producers and production capacities
3.6.4.3.1 FDCA and PEF producers and production capacities
3.6.4.3.2 Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons)
3.6.5 Polyamides (Bio-PA)
3.6.5.1 Market analysis
3.6.5.2 Producers and production capacities
3.6.5.3 Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)
3.6.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
3.6.6.1 Market analysis
3.6.6.2 Producers and production capacities
3.6.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)
3.6.7 Polybutylene succinate (PBS) and copolymers
3.6.7.1 Market analysis
3.6.7.2 Producers and production capacities
3.6.7.3 Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)
3.6.8 Polyethylene (Bio-PE)
3.6.8.1 Market analysis
3.6.8.2 Producers and production capacities
3.6.8.3 Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons)
3.6.9 Polypropylene (Bio-PP)
3.6.9.1 Market analysis
3.6.9.2 Producers and production capacities
3.6.9.3 Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)
3.7 Natural bio-based polymers
3.7.1 Polyhydroxyalkanoates (PHA)
3.7.1.1 Technology description
3.7.1.2 Types
3.7.1.2.1 PHB
3.7.1.2.2 PHBV
3.7.1.3 Synthesis and production processes
3.7.1.4 Market analysis
3.7.1.5 Commercially available PHAs
3.7.1.6 Markets for PHAs
3.7.1.6.1 Packaging
3.7.1.6.2 Cosmetics
3.7.1.6.2.1 PHA microspheres
3.7.1.6.3 Medical
3.7.1.6.3.1 Tissue engineering
3.7.1.6.3.2 Drug delivery
3.7.1.6.4 Agriculture
3.7.1.6.4.1 Mulch film
3.7.1.6.4.2 Grow bags
3.7.1.7 Producers and production capacities
3.7.1.8 PHA production capacities 2019-2033 (1,000 tons)
3.7.2 Polysaccharides
3.7.2.1 Microfibrillated cellulose (MFC)
3.7.2.1.1 Market analysis
3.7.2.1.2 Producers and production capacities
3.7.2.2 Nanocellulose
3.7.2.2.1 Cellulose nanocrystals
3.7.2.2.1.1 Synthesis
3.7.2.2.1.2 Properties
3.7.2.2.1.3 Production
3.7.2.2.1.4 Applications
3.7.2.2.1.5 Market analysis
3.7.2.2.1.6 Producers and production capacities
3.7.2.2.2 Cellulose nanofibers
3.7.2.2.2.1 Applications
3.7.2.2.2.2 Market analysis
3.7.2.2.2.3 Producers and production capacities
3.7.2.2.3 Bacterial Nanocellulose (BNC)
3.7.2.2.3.1 Production
3.7.2.2.3.2 Applications
3.7.3 Protein-based bioplastics
3.7.3.1 Types, applications and producers
3.7.4 Algal and fungal
3.7.4.1 Algal
3.7.4.1.1 Advantages
3.7.4.1.2 Production
3.7.4.1.3 Producers
3.7.4.2 Mycelium
3.7.4.2.1 Properties
3.7.4.2.2 Applications
3.7.4.2.3 Commercialization
3.7.5 Chitosan
3.7.5.1 Technology description
3.8 Production of bio-based and biodegradable plastics, by region
3.8.1 North America
3.8.2 Europe
3.8.3 Asia-Pacific
3.8.3.1 China
3.8.3.2 Japan
3.8.3.3 Thailand
3.8.3.4 Indonesia
3.8.4 Latin America
3.9 Markets for bio-based plastic
3.9.1 Packaging
3.9.1.1 Processes for bioplastics in packaging
3.9.1.2 Applications
3.9.1.3 Flexible packaging
3.9.1.3.1 Production volumes 2019-2033
3.9.1.4 Rigid packaging
3.9.1.4.1 Production volumes 2019-2033
3.9.2 Consumer products
3.9.2.1 Applications
3.9.3 Automotive
3.9.3.1 Applications
3.9.3.2 Production capacities
3.9.4 Building & construction
3.9.4.1 Applications
3.9.4.2 Production capacities
3.9.5 Textiles
3.9.5.1 Apparel
3.9.5.2 Footwear
3.9.5.3 Medical textiles
3.9.5.4 Production capacities
3.9.6 Electronics
3.9.6.1 Applications
3.9.6.2 Production capacities
3.9.7 Agriculture and horticulture
3.9.7.1 Production capacities
3.10 Natural fibers
3.10.1 Manufacturing method, matrix materials and applications of natural fibers
3.10.2 Advantages of natural fibers
3.10.3 Commercially available next-gen natural fiber products
3.10.4 Market drivers for next-gen natural fibers
3.10.5 Challenges
3.10.6 Plants (cellulose, lignocellulose)
3.10.6.1 Seed fibers
3.10.6.1.1 Cotton
3.10.6.1.1.1 Production volumes 2018-2033
3.10.6.1.2 Kapok
3.10.6.1.2.1 Production volumes 2018-2033
3.10.6.1.3 Luffa
3.10.6.2 Bast fibers
3.10.6.2.1 Jute
3.10.6.2.2 Production volumes 2018-2033
3.10.6.2.2.1 Hemp
3.10.6.2.2.2 Production volumes 2018-2033
3.10.6.2.3 Flax
3.10.6.2.3.1 Production volumes 2018-2033
3.10.6.2.4 Ramie
3.10.6.2.4.1 Production volumes 2018-2033
3.10.6.2.5 Kenaf
3.10.6.2.5.1 Production volumes 2018-2033
3.10.6.3 Leaf fibers
3.10.6.3.1 Sisal
3.10.6.3.1.1 Production volumes 2018-2033
3.10.6.3.2 Abaca
3.10.6.3.2.1 Production volumes 2018-2033
3.10.6.4 Fruit fibers
3.10.6.4.1 Coir
3.10.6.4.1.1 Production volumes 2018-2033
3.10.6.4.2 Banana
3.10.6.4.2.1 Production volumes 2018-2033
3.10.6.4.3 Pineapple
3.10.6.5 Stalk fibers from agricultural residues
3.10.6.5.1 Rice fiber
3.10.6.5.2 Corn
3.10.6.6 Cane, grasses and reed
3.10.6.6.1 Switch grass
3.10.6.6.2 Sugarcane (agricultural residues)
3.10.6.6.3 Bamboo
3.10.6.6.3.1 Production volumes 2018-2033
3.10.6.6.4 Fresh grass (green biorefinery)
3.10.6.7 Modified natural polymers
3.10.6.7.1 Mycelium
3.10.6.7.2 Chitosan
3.10.6.7.3 Alginate
3.10.7 Animal (fibrous protein)
3.10.7.1 Wool
3.10.7.1.1 Alternative wool materials
3.10.7.1.2 Producers
3.10.7.2 Silk fiber
3.10.7.2.1 Alternative silk materials
3.10.7.2.1.1 Producers
3.10.7.3 Leather
3.10.7.3.1 Alternative leather materials
3.10.7.3.1.1 Producers
3.10.7.4 Fur
3.10.7.4.1 Producers
3.10.7.5 Down
3.10.7.5.1 Alternative down materials
3.10.7.5.1.1 Producers
3.10.8 Natural fiber polymer composites and plastics
3.10.8.1 Applications
3.10.8.2 Natural fiber injection moulding compounds
3.10.8.2.1 Properties
3.10.8.2.2 Applications
3.10.8.3 Non-woven natural fiber mat composites
3.10.8.3.1 Automotive
3.10.8.3.2 Applications
3.10.8.4 Aligned natural fiber-reinforced composites
3.10.8.5 Natural fiber biobased polymer compounds
3.10.8.6 Natural fiber biobased polymer non-woven mats
3.10.8.6.1 Flax
3.10.8.6.2 Kenaf
3.10.8.7 Natural fiber thermoset bioresin composites
3.10.8.8 Aerospace
3.10.8.8.1 Market overview
3.10.8.9 Automotive
3.10.8.9.1 Market overview
3.10.8.9.2 Applications of natural fibers
3.10.8.10 Sports and leisure
3.10.8.10.1 Market overview
3.10.8.11 Packaging
3.10.8.11.1 Market overview
3.10.9 Global production of natural fibers
3.10.9.1 Overall global fibers market
3.10.9.2 Plant-based fiber production
3.10.9.3 Animal-based natural fiber production
3.11 Lignin
3.11.1 Introduction
3.11.1.1 What is lignin?
3.11.1.1.1 Lignin structure
3.11.1.2 Types of lignin
3.11.1.2.1 Sulfur containing lignin
3.11.1.2.2 Sulfur-free lignin from biorefinery process
3.11.1.3 Properties
3.11.1.4 The lignocellulose biorefinery
3.11.1.5 Markets and applications
3.11.1.6 Challenges for using lignin
3.11.2 Lignin production processes
3.11.2.1 Lignosulphonates
3.11.2.2 Kraft Lignin
3.11.2.2.1 LignoBoost process
3.11.2.2.2 LignoForce method
3.11.2.2.3 Sequential Liquid Lignin Recovery and Purification
3.11.2.2.4 A-Recovery
3.11.2.3 Soda lignin
3.11.2.4 Biorefinery lignin
3.11.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes
3.11.2.5 Organosolv lignins
3.11.2.6 Hydrolytic lignin
3.11.3 Markets for lignin
3.11.3.1 Market drivers and trends for lignin
3.11.3.2 Production capacities
3.11.3.2.1 Technical lignin availability (dry ton/y)
3.11.3.2.2 Biomass conversion (Biorefinery)
3.11.3.3 Estimated consumption of lignin
3.11.3.4 Prices
3.11.3.5 Aromatic compounds
3.11.3.5.1 Benzene, toluene and xylene
3.11.3.5.2 Phenol and phenolic resins
3.11.3.5.3 Vanillin
3.11.3.6 Lignin-based plastics and polymers
3.11.3.6.1 Lignin-based thermoplastics
3.11.3.6.2 Lignin-based thermosets
3.11.3.6.3 Epoxy resins
3.11.3.6.4 Packaging board
3.11.3.6.5 MDF and plywood
3.11.3.6.6 Polyurethanes (PU) and foams
3.11.3.6.7 Carbon materials
3.11.3.6.8 Carbon fiber
3.11.3.6.9 Automotive composites
3.11.3.6.10 Fire retardants
3.12 Bio-based polymers company profiles (492 company profiles)

4 CARBON (CO2) CAPTURE AND UTILIZATION FOR POLYMERS
4.1 Main sources of carbon dioxide emissions
4.2 CO2 as a commodity
4.3 Meeting climate targets
4.4 Market drivers and trends
4.5 The current market and future outlook
4.6 CCUS Industry developments 2020-2023
4.7 CCUS investments
4.7.1 Venture Capital Funding
4.8 Market map
4.9 Commercial CCUS facilities and projects
4.9.1 Facilities
4.9.1.1 Operational
4.9.1.2 Under development/construction
4.10 CCUS Value Chain
4.11 Key market barriers for CCUS
4.12 Carbon Capture, Utilization and Storage (CCUS) technologies
4.12.1 Carbon Capture
4.12.1.1 Source Characterization
4.12.1.2 Purification
4.12.1.3 CO2 capture technologies
4.12.2 Carbon Utilization
4.12.2.1 CO2 utilization pathways
4.12.3 Carbon storage
4.12.3.1 Passive storage
4.12.3.2 Enhanced oil recovery
4.13 Products from CO2 capture
4.13.1 Current market status
4.13.2 Benefits of carbon utilization
4.13.3 Market challenges
4.13.4 Co2 utilization pathways
4.13.5 Conversion processes
4.13.5.1 Thermochemical
4.13.5.1.1 Process overview
4.13.5.1.2 Plasma-assisted CO2 conversion
4.13.5.2 Electrochemical conversion of CO2
4.13.5.2.1 Process overview
4.13.5.3 Photocatalytic and photothermal catalytic conversion of CO2
4.13.5.4 Catalytic conversion of CO2
4.13.5.5 Biological conversion of CO2
4.13.5.6 Copolymerization of CO2
4.13.5.7 Mineral carbonation
4.13.6 CO2-derived polymers
4.13.6.1 CO2 for the development of polymer materials
4.13.6.2 Polycarbonate from CO2
4.13.6.3 Scalability
4.13.6.4 Carbon nanotubes as by- products of CO2 conversion and sequestration
4.14 CO2-derived polymer producer profiles (30 company profiles)

5 REFERENCES

List of Tables
Table 1. List of Bio-based chemicals
Table 2. Lactide applications
Table 3. Biobased MEG producers capacities
Table 4. Bio-naphtha market value chain
Table 5. Bio-naptha producers and production capacities
Table 6. Type of biodegradation
Table 7. Advantages and disadvantages of biobased plastics compared to conventional plastics
Table 8. Types of Bio-based and/or Biodegradable Plastics, applications
Table 9. Market leader by Bio-based and/or Biodegradable Plastic types
Table 10. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
Table 11. Lactic acid producers and production capacities
Table 12. PLA producers and production capacities
Table 13. Planned PLA capacity expansions in China
Table 14. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications
Table 15. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
Table 16. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications
Table 17. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
Table 18. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
Table 19. PEF vs. PET
Table 20. FDCA and PEF producers
Table 21. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications
Table 22. Leading Bio-PA producers production capacities
Table 23. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications
Table 24. Leading PBAT producers, production capacities and brands
Table 25. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications
Table 26. Leading PBS producers and production capacities
Table 27. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications
Table 28. Leading Bio-PE producers
Table 29. Bio-PP market analysis- manufacture, advantages, disadvantages and applications
Table 30. Leading Bio-PP producers and capacities
Table 31.Types of PHAs and properties
Table 32. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
Table 33. Polyhydroxyalkanoate (PHA) extraction methods
Table 34. Polyhydroxyalkanoates (PHA) market analysis
Table 35. Commercially available PHAs
Table 36. Markets and applications for PHAs
Table 37. Applications, advantages and disadvantages of PHAs in packaging
Table 38. Polyhydroxyalkanoates (PHA) producers
Table 39. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications
Table 40. Leading MFC producers and capacities
Table 41. Synthesis methods for cellulose nanocrystals (CNC)
Table 42. CNC sources, size and yield
Table 43. CNC properties
Table 44. Mechanical properties of CNC and other reinforcement materials
Table 45. Applications of nanocrystalline cellulose (NCC)
Table 46. Cellulose nanocrystals analysis
Table 47: Cellulose nanocrystal production capacities and production process, by producer
Table 48. Applications of cellulose nanofibers (CNF)
Table 49. Cellulose nanofibers market analysis
Table 50. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes
Table 51. Applications of bacterial nanocellulose (BNC)
Table 52. Types of protein based-bioplastics, applications and companies
Table 53. Types of algal and fungal based-bioplastics, applications and companies
Table 54. Overview of alginate-description, properties, application and market size
Table 55. Companies developing algal-based bioplastics
Table 56. Overview of mycelium fibers-description, properties, drawbacks and applications
Table 57. Companies developing mycelium-based bioplastics
Table 58. Overview of chitosan-description, properties, drawbacks and applications
Table 59. Global production capacities of biobased and sustainable plastics in 2019-2033, by region, tons
Table 60. Biobased and sustainable plastics producers in North America
Table 61. Biobased and sustainable plastics producers in Europe
Table 62. Biobased and sustainable plastics producers in Asia-Pacific
Table 63. Biobased and sustainable plastics producers in Latin America
Table 64. Processes for bioplastics in packaging
Table 65. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging
Table 66. Typical applications for bioplastics in flexible packaging
Table 67. Typical applications for bioplastics in rigid packaging
Table 68. Types of next-gen natural fibers
Table 69. Application, manufacturing method, and matrix materials of natural fibers
Table 70. Typical properties of natural fibers
Table 71. Commercially available next-gen natural fiber products
Table 72. Market drivers for natural fibers
Table 73. Overview of cotton fibers-description, properties, drawbacks and applications
Table 74. Overview of kapok fibers-description, properties, drawbacks and applications
Table 75. Overview of luffa fibers-description, properties, drawbacks and applications
Table 76. Overview of jute fibers-description, properties, drawbacks and applications
Table 77. Overview of hemp fibers-description, properties, drawbacks and applications
Table 78. Overview of flax fibers-description, properties, drawbacks and applications
Table 79. Overview of ramie fibers- description, properties, drawbacks and applications
Table 80. Overview of kenaf fibers-description, properties, drawbacks and applications
Table 81. Overview of sisal leaf fibers-description, properties, drawbacks and applications
Table 82. Overview of abaca fibers-description, properties, drawbacks and applications
Table 83. Overview of coir fibers-description, properties, drawbacks and applications
Table 84. Overview of banana fibers-description, properties, drawbacks and applications
Table 85. Overview of pineapple fibers-description, properties, drawbacks and applications
Table 86. Overview of rice fibers-description, properties, drawbacks and applications
Table 87. Overview of corn fibers-description, properties, drawbacks and applications
Table 88. Overview of switch grass fibers-description, properties and applications
Table 89. Overview of sugarcane fibers-description, properties, drawbacks and application and market size
Table 90. Overview of bamboo fibers-description, properties, drawbacks and applications
Table 91. Overview of mycelium fibers-description, properties, drawbacks and applications
Table 92. Overview of chitosan fibers-description, properties, drawbacks and applications
Table 93. Overview of alginate-description, properties, application and market size
Table 94. Overview of wool fibers-description, properties, drawbacks and applications
Table 95. Alternative wool materials producers
Table 96. Overview of silk fibers-description, properties, application and market size
Table 97. Alternative silk materials producers
Table 98. Alternative leather materials producers
Table 99. Next-gen fur producers
Table 100. Alternative down materials producers
Table 101. Applications of natural fiber composites
Table 102. Typical properties of short natural fiber-thermoplastic composites
Table 103. Properties of non-woven natural fiber mat composites
Table 104. Properties of aligned natural fiber composites
Table 105. Properties of natural fiber-bio-based polymer compounds
Table 106. Properties of natural fiber-bio-based polymer non-woven mats
Table 107. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use
Table 108. Natural fiber-reinforced polymer composite in the automotive market
Table 109. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use
Table 110. Applications of natural fibers in the automotive industry
Table 111. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use
Table 112. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use
Table 113. Technical lignin types and applications
Table 114. Classification of technical lignins
Table 115. Lignin content of selected biomass
Table 116. Properties of lignins and their applications
Table 117. Example markets and applications for lignin
Table 118. Processes for lignin production
Table 119. Biorefinery feedstocks
Table 120. Comparison of pulping and biorefinery lignins
Table 121. Commercial and pre-commercial biorefinery lignin production facilities and processes
Table 122. Market drivers and trends for lignin
Table 123. Production capacities of technical lignin producers
Table 124. Production capacities of biorefinery lignin producers
Table 125. Estimated consumption of lignin, 2019-2033 (000 MT)
Table 126. Prices of benzene, toluene, xylene and their derivatives
Table 127. Application of lignin in plastics and polymers
Table 128. Lactips plastic pellets
Table 129. Oji Holdings CNF products
Table 130. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends
Table 131. Carbon capture, usage, and storage (CCUS) industry developments 2020-2023
Table 132. Global commercial CCUS facilities-in operation
Table 133. Global commercial CCUS facilities-under development/construction
Table 134. Key market barriers for CCUS
Table 135. CO2 utilization and removal pathways
Table 136. Approaches for capturing carbon dioxide (CO2) from point sources
Table 137. CO2 capture technologies
Table 138. Advantages and challenges of carbon capture technologies
Table 139. Overview of commercial materials and processes utilized in carbon capture
Table 140. Carbon utilization revenue forecast by product (US$)
Table 141. CO2 utilization and removal pathways
Table 142. Market challenges for CO2 utilization
Table 143. Example CO2 utilization pathways
Table 144. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages
Table 145. Electrochemical CO2 reduction products
Table 146. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages
Table 147. CO2 derived products via biological conversion-applications, advantages and disadvantages
Table 148. Companies developing and producing CO2-based polymers
Table 149. Companies developing mineral carbonation technologies
Table 150. Commodity chemicals and fuels manufactured from CO2

List of Figures
Figure 1. Bio-based chemicals and feedstocks production capacities, 2018-2033
Figure 2. Overview of Toray process. Overview of process
Figure 3. Production capacities for 11-Aminoundecanoic acid (11-AA)
Figure 4. 1,4-Butanediol (BDO) production capacities, 2018-2033 (tonnes)
Figure 5. Dodecanedioic acid (DDDA) production capacities, 2018-2033 (tonnes)
Figure 6. Epichlorohydrin production capacities, 2018-2033 (tonnes)
Figure 7. Ethylene production capacities, 2018-2033 (tonnes)
Figure 8. Potential industrial uses of 3-hydroxypropanoic acid
Figure 9. L-lactic acid (L-LA) production capacities, 2018-2033 (tonnes)
Figure 10. Lactide production capacities, 2018-2033 (tonnes)
Figure 11. Bio-MEG production capacities, 2018-2033
Figure 12. Bio-MPG production capacities, 2018-2033 (tonnes)
Figure 13. Biobased naphtha production capacities, 2018-2033 (tonnes)
Figure 14. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2033 (tonnes)
Figure 15. Sebacic acid production capacities, 2018-2033 (tonnes)
Figure 16. Coca-Cola PlantBottle®
Figure 17. Interrelationship between conventional, bio-based and biodegradable plastics
Figure 18. Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)
Figure 19. Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)
Figure 20. Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)
Figure 21. Production capacities of Polyethylene furanoate (PEF) to 2025
Figure 22. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons)
Figure 23. Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)
Figure 24. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)
Figure 25. Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)
Figure 26. Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons)
Figure 27. Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)
Figure 28. PHA family
Figure 29. PHA production capacities 2019-2033 (1,000 tons)
Figure 30. TEM image of cellulose nanocrystals
Figure 31. CNC preparation
Figure 32. Extracting CNC from trees
Figure 33. CNC slurry
Figure 34. CNF gel
Figure 35. Bacterial nanocellulose shapes
Figure 36. BLOOM masterbatch from Algix
Figure 37. Typical structure of mycelium-based foam
Figure 38. Commercial mycelium composite construction materials
Figure 39. Global production capacities of biobased and sustainable plastics 2020
Figure 40. Global production capacities of biobased and sustainable plastics 2025
Figure 41. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, 1,000 tons
Figure 42. PHA bioplastics products
Figure 43. The global market for biobased and biodegradable plastics for flexible packaging 2019-2033 (‘000 tonnes)
Figure 44. Bioplastics for rigid packaging, 2019-2033 (‘000 tonnes)
Figure 45. Global production capacities for biobased and biodegradable plastics in consumer products 2019-2033, in 1,000 tons
Figure 46. Global production capacities for biobased and biodegradable plastics in automotive 2019-2033, in 1,000 tons
Figure 47. Global production capacities for biobased and biodegradable plastics in building and construction 2019-2033, in 1,000 tons
Figure 48. AlgiKicks sneaker, made with the Algiknit biopolymer gel
Figure 49. Reebok's [REE]GROW running shoes
Figure 50. Camper Runner K21
Figure 51. Global production capacities for biobased and biodegradable plastics in textiles 2019-2033, in 1,000 tons
Figure 52. Global production capacities for biobased and biodegradable plastics in electronics 2019-2033, in 1,000 tons
Figure 53. Biodegradable mulch films
Figure 54. Global production capacities for biobased and biodegradable plastics in agriculture 2019-2033, in 1,000 tons
Figure 55. Types of natural fibers
Figure 56. Absolut natural based fiber bottle cap
Figure 57. Adidas algae-ink tees
Figure 58. Carlsberg natural fiber beer bottle
Figure 59. Miratex watch bands
Figure 60. Adidas Made with Nature Ultraboost 22
Figure 61. PUMA RE:SUEDE sneaker
Figure 62. Cotton production volume 2018-2033 (Million MT)
Figure 63. Kapok production volume 2018-2033 (MT)
Figure 64. Luffa cylindrica fiber
Figure 65. Jute production volume 2018-2033 (Million MT)
Figure 66. Hemp fiber production volume 2018-2033 ( MT)
Figure 67. Flax fiber production volume 2018-2033 (MT)
Figure 68. Ramie fiber production volume 2018-2033 (MT)
Figure 69. Kenaf fiber production volume 2018-2033 (MT)
Figure 70. Sisal fiber production volume 2018-2033 (MT)
Figure 71. Abaca fiber production volume 2018-2033 (MT)
Figure 72. Coir fiber production volume 2018-2033 (MILLION MT)
Figure 73. Banana fiber production volume 2018-2033 (MT)
Figure 74. Pineapple fiber
Figure 75. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019
Figure 76. Bamboo fiber production volume 2018-2033 (MILLION MT)
Figure 77. Typical structure of mycelium-based foam
Figure 78. Commercial mycelium composite construction materials
Figure 79. Frayme Mylo™?
Figure 80. BLOOM masterbatch from Algix
Figure 81. Conceptual landscape of next-gen leather materials
Figure 82. Hemp fibers combined with PP in car door panel
Figure 83. Car door produced from Hemp fiber
Figure 84. Mercedes-Benz components containing natural fibers
Figure 85. Global fiber production in 2022, by fiber type, million MT and %
Figure 86. Global fiber production (million MT) to 2020-2033
Figure 87. Plant-based fiber production 2018-2033, by fiber type, MT
Figure 88. Animal based fiber production 2018-2033, by fiber type, million MT
Figure 89. High purity lignin
Figure 90. Lignocellulose architecture
Figure 91. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins
Figure 92. The lignocellulose biorefinery
Figure 93. LignoBoost process
Figure 94. LignoForce system for lignin recovery from black liquor
Figure 95. Sequential liquid-lignin recovery and purification (SLPR) system
Figure 96. A-Recovery chemical recovery concept
Figure 97. Schematic of a biorefinery for production of carriers and chemicals
Figure 98. Organosolv lignin
Figure 99. Hydrolytic lignin powder
Figure 100. Estimated consumption of lignin, 2019-2033 (000 MT)
Figure 101. Schematic of WISA plywood home
Figure 102. Lignin based activated carbon
Figure 103. Lignin/celluose precursor
Figure 104. Pluumo
Figure 105. ANDRITZ Lignin Recovery process
Figure 106. Anpoly cellulose nanofiber hydrogel
Figure 107. MEDICELLU™
Figure 108. Asahi Kasei CNF fabric sheet
Figure 109. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric
Figure 110. CNF nonwoven fabric
Figure 111. Roof frame made of natural fiber
Figure 112. Beyond Leather Materials product
Figure 113. BIOLO e-commerce mailer bag made from PHA
Figure 114. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc
Figure 115. Fiber-based screw cap
Figure 116. formicobio™ technology
Figure 117. nanoforest-S
Figure 118. nanoforest-PDP
Figure 119. nanoforest-MB
Figure 120. sunliquid® production process
Figure 121. CuanSave film
Figure 122. Celish
Figure 123. Trunk lid incorporating CNF
Figure 124. ELLEX products
Figure 125. CNF-reinforced PP compounds
Figure 126. Kirekira! toilet wipes
Figure 127. Color CNF
Figure 128. Rheocrysta spray
Figure 129. DKS CNF products
Figure 130. Domsjö process
Figure 131. Mushroom leather
Figure 132. CNF based on citrus peel
Figure 133. Citrus cellulose nanofiber
Figure 134. Filler Bank CNC products
Figure 135. Fibers on kapok tree and after processing
Figure 136. TMP-Bio Process
Figure 137. Flow chart of the lignocellulose biorefinery pilot plant in Leuna
Figure 138. Water-repellent cellulose
Figure 139. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
Figure 140. PHA production process
Figure 141. CNF products from Furukawa Electric
Figure 142. AVAPTM process
Figure 143. GreenPower ™ process
Figure 144. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
Figure 145. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
Figure 146. CNF gel
Figure 147. Block nanocellulose material
Figure 148. CNF products developed by Hokuetsu
Figure 149. Marine leather products
Figure 150. Inner Mettle Milk products
Figure 151. Kami Shoji CNF products
Figure 152. Dual Graft System
Figure 153. Engine cover utilizing Kao CNF composite resins
Figure 154. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended)
Figure 155. Kel Labs yarn
Figure 156. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side)
Figure 157. BioFlex process
Figure 158. Nike Algae Ink graphic tee
Figure 159. LX Process
Figure 160. Made of Air's HexChar panels
Figure 161. TransLeather
Figure 162. Chitin nanofiber product
Figure 163. Marusumi Paper cellulose nanofiber products
Figure 164. FibriMa cellulose nanofiber powder.502
Figure 165. METNIN™ Lignin refining technology
Figure 166. IPA synthesis method
Figure 167. MOGU-Wave panels
Figure 168. CNF slurries
Figure 169. Range of CNF products
Figure 170. Reishi
Figure 171. Compostable water pod
Figure 172. Leather made from leaves
Figure 173. Nike shoe with beLEAF™
Figure 174. CNF clear sheets
Figure 175. Oji Holdings CNF polycarbonate product
Figure 176. Enfinity cellulosic ethanol technology process
Figure 177. Fabric consisting of 70 per cent wool and 30 per cent Qmilk
Figure 178. XCNF
Figure 179: Plantrose process
Figure 180. LOVR hemp leather
Figure 181. CNF insulation flat plates
Figure 182. Hansa lignin
Figure 183. Manufacturing process for STARCEL
Figure 184. Manufacturing process for STARCEL
Figure 185. 3D printed cellulose shoe
Figure 186. Lyocell process
Figure 187. North Face Spiber Moon Parka
Figure 188. PANGAIA LAB NXT GEN Hoodie
Figure 189. Spider silk production
Figure 190. Stora Enso lignin battery materials
Figure 191. 2 wt.% CNF suspension
Figure 192. BiNFi-s Dry Powder
Figure 193. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet
Figure 194. Silk nanofiber (right) and cocoon of raw material
Figure 195. Sulapac cosmetics containers
Figure 196. Sulzer equipment for PLA polymerization processing
Figure 197. Teijin bioplastic film for door handles
Figure 198. Corbion FDCA production process
Figure 199. Comparison of weight reduction effect using CNF
Figure 200. CNF resin products
Figure 201. UPM biorefinery process
Figure 202. Vegea production process
Figure 203. The Proesa® Process
Figure 204. Goldilocks process and applications
Figure 205. Visolis’ Hybrid Bio-Thermocatalytic Process
Figure 206. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test
Figure 207. Worn Again products
Figure 208. Zelfo Technology GmbH CNF production process
Figure 209. Carbon emissions by sector
Figure 210. Overview of CCUS market
Figure 211. Pathways for CO2 use
Figure 212. Regional capacity share 2022-2030
Figure 213. Global investment in carbon capture 2010-2022, millions USD
Figure 214. Carbon Capture, Utilization, & Storage (CCUS) Market Map
Figure 215. CCS deployment projects, historical and to 2035
Figure 216. Existing and planned CCS projects
Figure 217. CCUS Value Chain
Figure 218. Schematic of CCUS process
Figure 219. Pathways for CO2 utilization and removal
Figure 220. A pre-combustion capture system
Figure 221. Carbon dioxide utilization and removal cycle
Figure 222. Various pathways for CO2 utilization
Figure 223. Example of underground carbon dioxide storage
Figure 224. CO2 non-conversion and conversion technology, advantages and disadvantages
Figure 225. Applications for CO2
Figure 226. Cost to capture one metric ton of carbon, by sector
Figure 227. Life cycle of CO2-derived products and services
Figure 228. Co2 utilization pathways and products
Figure 229. Plasma technology configurations and their advantages and disadvantages for CO2 conversion
Figure 230. LanzaTech gas-fermentation process
Figure 231. Schematic of biological CO2 conversion into e-fuels
Figure 232. Econic catalyst systems
Figure 233. Mineral carbonation processes
Figure 234. Conversion of CO2 into chemicals and fuels via different pathways
Figure 235. Conversion pathways for CO2-derived polymeric materials
Figure 236. Dioxycle modular electrolyzer
Figure 237. O12 Reactor
Figure 238. Sunglasses with lenses made from CO2-derived materials
Figure 239. CO2 made car part

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • Loick Biowertstoff GmbH
  • 3M
  • 9Fiber, Inc.
  • ADBioplastics
  • Adriano di Marti/Desserto
  • Advanced Biochemical (Thailand) Co., Ltd.
  • Aemetis, Inc.
  • Aeropowder Limited
  • AGRANA Staerke GmbH
  • Ahlstrom-Munksjö Oyj
  • Algaeing
  • Algal Bio Co., Ltd.
  • Algix LLC
  • AMSilk GmbH
  • An Phát Bioplastics
  • Ananas Anam Ltd.
  • Andritz AG
  • Anellotech, Inc.
  • Ankor Bioplastics Co., Ltd.
  • ANPOLY, Inc.
  • Anqing He Xing Chemical Co., Ltd.
  • Applied Bioplastics
  • Aquafil S.p.A.
  • Aquapak Polymers Ltd
  • Archer Daniel Midland Company (ADM)
  • Arctic Biomaterials Oy
  • Arekapak GmbH
  • Arkema S.A
  • Arlanxeo
  • Arrow Greentech
  • Arzeda Corp.
  • Asahi Kasei
  • Asahi Kasei Chemicals Corporation
  • Attis Innovations, llc
  • AVA Biochem AG
  • Avani Eco
  • Avantium B.V.
  • Axcelon Biopolymers Corporation
  • Ayas Renewables Inc.
  • Azolla
  • Bambooder Biobased Fibers B.V.
  • BASF SE
  • Bast Fiber Technologies, Inc.
  • BBCA Biochemical & GALACTIC Lactic Acid Co., Ltd.
  • Bcomp ltd.
  • Betulium Oy
  • Beyond Leather Materials ApS
  • Bio Fab NZ
  • Bio2Materials Sp. z o.o.
  • Bioextrax AB
  • BIO-FED
  • Biofiber Tech Sweden AB
  • Biofibre GmbH
  • Biofine Technology, LLC
  • Biokemik
  • Bioleather
  • BIOLO
  • BioLogiQ, Inc.
  • BIO-LUTIONS International AG
  • Biomass Resin Holdings Co., Ltd
  • Biome Bioplastics
  • Biophilica
  • Bioplastech Ltd
  • BioSolutions
  • BIOTEC GmbH & Co. KG
  • Biotecam
  • Biotrem
  • Bioweg
  • BlockTexx Pty Ltd.
  • Bloom Biorenewables SA
  • BluCon Biotech GmbH
  • Blue BioFuels, Inc.
  • Blue Ocean Closures
  • Bluepha Beijing Lanjing Microbiology Technology Co., Ltd.
  • Bolt Threads
  • Borealis AG
  • Borregaard Chemcell
  • Bosk Bioproducts Inc.
  • Bowil Biotech Sp. z o.o.
  • B-PREG
  • Braskem SA
  • Bucha Bio, Inc.
  • Burgo Group S.p.A.
  • C2CNT LLC
  • C4X Technologies Inc.
  • CARAPAC Company
  • Carbiolice
  • Carbios
  • Carbon Crusher
  • Carbon Sink LLC
  • Carbon Upcycling Technologies
  • Carbonade
  • Carbonfree Chemicals
  • CarbonMeta Research Ltd
  • Carbonova
  • Carbonwave
  • Cardia Bioplastics Ltd.
  • Cardolite
  • Cargill
  • Cass Materials Pty Ltd
  • Catalyxx
  • Cathay Industrial Biotech, Ltd.
  • Celanese Corporation
  • Cellicon B.V.
  • Cellucomp Ltd.
  • Cellugy
  • Cellutech AB (Stora Enso)
  • Cemvita Factory Inc.
  • CERT Systems, Inc.
  • CH-Bioforce Oy
  • Checkerspot, Inc.
  • Chempolis Oy
  • Chiyoda Corporation
  • Chongqing Bofei Biochemical Products Co., Ltd.
  • Chuetsu Pulp & Paper Co., Ltd.
  • CIMV
  • Circa Group
  • Circular Systems
  • CJ Biomaterials, Inc.
  • Clariant AG
  • CO2CirculAir B.V.
  • Coastgrass ApS
  • COFCO Cooperation Ltd.
  • Corumat, Inc.
  • Covestro AG
  • CreaFill Fibers Corporation
  • Cristal Union Group
  • Cruz Foam
  • CuanTec Ltd.
  • Daicel Corporation
  • Daicel Polymer Ltd.
  • DaikyoNishikawa Corporation
  • Daio Paper Corporation
  • Daishowa Paper Products Co. Ltd.
  • DAK Americas LLC
  • Danimer Scientific LLC
  • D-CRBN
  • DENSO Corporation
  • Diamond Green Diesel LLC
  • DIC Corporation
  • DIC Products, Inc.
  • Dioxycle
  • DKS Co. Ltd.
  • Domsjö Fabriker AB
  • Domtar Paper Company LLC
  • Dongnam Realize
  • Dongying Hebang Chemical Corp.
  • Dow, Inc.
  • DuFor Resins B.V.
  • DuPont
  • DuPont Tate & Lyle Bio Products Co., LLC
  • Eastman Chemical Ltd. Corporation
  • Econic Technologies Ltd
  • Ecopel
  • Ecoshell
  • Ecovative Design LLC
  • Ecovia Renewables
  • EggPlant Srl
  • Ehime Paper Manufacturing Co. Ltd.
  • Empower Materials, Inc.
  • EMS-Grivory
  • enbro Bamboo Company
  • Enerkem, Inc.
  • Eni S.p.A.
  • Enkev
  • Enviral
  • Eranova
  • Esbottle Oy
  • Evolved By Nature
  • Evonik Industries AG
  • Evrnu
  • Fairbrics
  • Faircraft
  • Far Eastern New Century Corporation
  • Fiberight
  • Fiberlean Technologies
  • Fillerbank Limited
  • Fiquetex S.A.S.
  • FKuR Kunststoff GmbH
  • Flocus
  • Floreon
  • Foamplant BV
  • FP Innovations
  • Fraunhofer Center for Chemical-Biotechnological Processes CBP
  • Fraunhofer Institute for Silicate Research ISC
  • Fraunhofer Institute for Structural Durability and System Reliability LBF
  • Freyzein
  • Fruit Leather Rotterdam
  • Fuji Pigment Co., Ltd.
  • Full Cycle Bioplastics LLC
  • Furukawa Electric Co., Ltd.
  • Futerro
  • Futuramat Sarl
  • Futurity Bio-Ventures Ltd.
  • G+E GETEC Holding GmbH
  • Galatea Biotech Srl
  • Gelatex Technologies OÜ
  • Gen3Bio
  • Genecis Bioindustries, Inc.
  • GeneusBiotech BV
  • Genomatica
  • Giner, Inc.
  • Global Algae Innovations
  • Global Bioenergies SA
  • Grabio Greentech Corporation
  • Grado Zero Innovation
  • Granbio Technologies
  • Grupp MAIP
  • GS Alliance Co. Ltd
  • Guangzhou Bio-plus Materials Technology Co., Ltd.
  • Haldor Topsoe A/S
  • Hattori Shoten K.K.
  • Hebei Casda Biomaterials Co., Ltd.
  • Hebei Jiheng Chemical Co., Ltd.
  • Hebei Xinhua Lactic Acid Co.
  • Heilongjiang Chenneng Bioengineering Ltd.
  • Henan Jindan Lactic Acid Technology Co., Ltd.
  • Henan Xinghan Biological Technology Co., Ltd.
  • Hengli Petrochemical
  • Hengshui Jinghua Chemical Co., Ltd.
  • Hexa Chemical Co. Ltd./Nature Gift
  • Hexion Inc
  • Hokuetsu Toyo Fibre Co., Ltd.
  • Honext Material SL
  • Hubei Guangshui National Chemical Co., Ltd.
  • Humintech GmbH
  • Hunan Anhua Lactic Acid Co
  • Icytos
  • India Glycols Ltd.
  • Indochine Bio Plastiques (ICBP) Sdn Bhd
  • Indorama Ventures Public Co. Ltd.
  • Infinited Fiber Company Oy
  • Ingevity
  • Inner Mettle
  • Inovyn
  • Inspidere B.V.
  • Iogen Corporation
  • Lectrolyst LLC
  • Loliware LLC
  • LOTTE Chemical Corporation
  • LXP Group GmbH
  • Lygos, Inc
  • LyondellBasell Industries Holdings B.V.
  • Made of Air GmbH
  • MakeGrowLab
  • Malai Biomaterials Design Pvt. Ltd. (Malai)
  • Mango Materials, Inc.
  • Marea
  • Marine Innovation Co., Ltd
  • Marine Nanofiber Co., Ltd.
  • Mars Materials
  • Marusumi Paper Company Limited
  • Masuko Sangyo Co., Ltd.
  • MedPHA Bio-Tech Co., Ltd.
  • Meghmani Finechem Ltd.
  • Mehler Engineered Products GmbH
  • Mercurius Biorefining Inc
  • METabolic EXplorer S.A. (METEX)
  • Metgen Oy
  • Mitr Phol
  • Mitsubishi Chemical Corporation
  • Mitsubishi Polyester Film GmbH
  • Mitsui Chemicals, Inc.
  • Mobius
  • Modern Meadow, Inc.
  • Modern Synthesis
  • Mogu S.r.l.
  • Mori Machinery Co., Ltd.
  • Multibax Public Co., Ltd.
  • Mura Technology Limited
  • Musashino Chemical Laboratory, Ltd.
  • MYCL
  • MycoWorks
  • Mylium BV
  • Nabaco, Inc.
  • Nafigate Corporation a.s.
  • Nanollose Ltd
  • Nantong Cellulose Fibers Co., Ltd
  • Nantong Jiuding Biological Engineering Co., Ltd.
  • NatPol
  • Natural Fiber Welding, Inc.
  • Nature Coatings, Inc.
  • NatureWorks LLC
  • NefFa
  • Neste Oyj
  • New Zealand Natural Fibers (NZNF)
  • NewEnergyBlue LLC
  • Newlight Technologies LLC
  • NEXE Innovations Inc.
  • Ningbo Huanyang Chemical Co., Ltd.
  • Ningbo Tianan Biologic Material
  • Nippon Paper Industries
  • Norske Skog AS
  • Northern Technologies International
  • Notpla
  • Nova Kaeru
  • Novamont S.p.A.
  • Novomer
  • Novozymes A/S
  • NUREL S.A.
  • Nuvi Releaf
  • Nxtlevvel
  • Oakbio, Inc.
  • Oimo
  • Oji Paper Company
  • Oleago
  • Oleon N.V.
  • Orange Fiber S.r.l.
  • Organic Disposables
  • Origin Materials
  • ORLEN Poludnie
  • OXCCU Tech Ltd.
  • Oxylum
  • Pangaia Ltd.
  • Paques Biomaterials
  • PHABuilder
  • PHB Industrial S.A.
  • Photanol B.V.
  • Pivot Materials LLC
  • Plafco Fibertech Oy
  • Plantic Technologies Ltd.
  • Plantics B.V.
  • Polaris Renewables LLC
  • Polybion
  • Polyferm
  • Pond Biomaterials
  • Praj Industries Ltd.
  • Prime Polymer Co., Ltd.
  • PRISMA Renewable Composites
  • Prometheus Fuels, Inc.
  • Provenance Biofabrics, Inc.
  • PT Intera Lestari Polimer
  • PTT MCC Biochem Co., Ltd.
  • Pure Lignin Environmental Technology Ltd.
  • Q-milk GmbH
  • Qnature UG
  • Qorium
  • Radical Plastics
  • Radici Group
  • Rayonier Advanced Materials
  • Re:newcell
  • Red Avenue New Materials Group Co., Ltd.
  • Red Leaf Pulp Ltd.
  • Relement BV
  • RenCom AB
  • RenFuel
  • Rengo Co., Ltd.
  • Renmatix
  • Resolute Forest Products, Inc.
  • Revoltech GmbH
  • RiceHouse srl
  • Ripro Corporation
  • RISE Research Institutes of Sweden AB
  • Risho Kogyo Co. Ltd.
  • Rodenburg Biopolymers B.V.
  • Roquette S.A.
  • Royal DSM N.V.
  • RWDC Industries
  • Sainc Energy Limited
  • SaltyCo Textiles
  • Samyang Corporation
  • Saphium Biotechnology GMBH
  • SAPPI Biotech
  • Saudi Basic Industries Corp. (SABIC)
  • ScobyTec GmbH
  • Seawear Ltd.
  • Sebacic Oman SAOC
  • Sebiplast s.r.l.
  • Seevix Material Sciences Ltd.
  • Seiko PMC Corporation
  • Sekab E-Technology AB
  • S-EnPol Co., Ltd.
  • Shandong Baisheng Biotechnology Co., Ltd.
  • Shandong Fuwin New Material Co., Ltd.
  • Shandong Landian Biological Technology Co., Ltd.
  • Shandong Minji Chemical Co., Ltd.
  • Shandong Siqiang Chemical Group Co., Ltd.
  • Shanghai Tong-Jie-Liang Biomaterials Co., Ltd.
  • Shanxi Leda Biochemical Co., Ltd.
  • Shanxi Zhengang Chemical Co., Ltd.
  • Sharp Chemical Ind. Co., Ltd.
  • Shenghong Group
  • Shenzhen Ecomann Biotechnology Co., Ltd.
  • Shenzhen Esun Industrial Co., Ltd.
  • Simplifyber, Inc.
  • Sirmax Group
  • SK Chemicals Co., Ltd.
  • SkyNano Technologies
  • Slow Factory Labs
  • Smartfiber AG
  • Solvay SA
  • Soma Bioworks/White Lemur Co.
  • Spectrus Sustainable Solutions Pvt Ltd
  • Spero Renewables
  • Spiber, Inc.
  • Spidey Tek
  • Spinnova Oy
  • Spolchemie
  • Spora Biotech
  • St1 Oy
  • STORA ENSO OYJ
  • Sugino Machine Limited
  • Sulapac Oy
  • Sulzer Chemtech AG
  • Sunar Misir
  • SunCoal Industries GmbH
  • SUPLA Bioplastics
  • Suzano SA
  • Sweetwater Energy
  • TAIF-NK
  • Tandem Repeat
  • Tanin sevnica kemicna industrija
  • TBM Co., Ltd.
  • Teal Bioworks, Inc.
  • TechnipFMC
  • TECNARO GmbH
  • Teijin Ltd
  • TerraVerdae BioWorks Inc
  • Teysha Technologies Limited
  • thyssenkrupp Industrial Solutions AG
  • Tianan Biologic Material Co., Ltd.
  • Tianjin GreenBio Materials Co., Ltd
  • Tianxing Biotechnology Co., Ltd.
  • Tômtex
  • Tongliao Xinghe Biotechnology Co., Ltd.
  • Toray Industries, Inc.
  • TotalEnergies Corbion
  • Toyobo Co., Ltd.
  • Toyota Boshoku Corporation
  • Treemera GmbH
  • TripleW
  • TS Tech Co., Ltd.
  • Twelve
  • UBQ Materials
  • Uluu
  • Unitika Ltd.
  • Universal Bio Pack Co., Ltd.
  • UPM Biochemicals
  • UPM Biocomposites
  • UPM-Kymmene Oyj
  • Valmet Oyj
  • Vegatex Biotech
  • Vegea srl
  • VEnvirotech Biotechnology SL
  • Versalis SpA
  • Vertoro
  • ViaeX Technologies
  • Vibers BV
  • Virent Inc.
  • Visolis Inc.
  • VitroLabs Inc
  • von Holzhausen
  • VTT Technical Research Centre of Finland Ltd
  • Vynova
  • Werewool
  • West Fraser Timber Co Ltd.
  • WeylChem International GmbH
  • Woodly Ltd.
  • Worn Again Technologies
  • Wuhan Sanjiang Space Good Biotech Co., Ltd.
  • Xampla
  • Xillix GmbH
  • Xingzhenghe Chemical Co., Ltd.
  • Xinjiang Lanshan Tunhe
  • Yield10 Bioscience, Inc.
  • Yokogawa Electric Corporation
  • Yoshikawakuni Plastics Industries Co., Ltd.
  • Zelfo Technology
  • Zhangjiagang Glory Chemical Industry Co., Ltd
  • Zhejiang Hangzhou Xinfu Pharmaceutical Co., Ltd.
  • Zhejiang Hisun Biomaterials Co., Ltd.
  • Zhejiang Youcheng New Materials Co., Ltd
  • Zvnder

Methodology

Loading
LOADING...