0
USD
EUR USD GBP
+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

The Global Market for Bio-based Polymers 2025-2035

  • PDF Icon

    Report

  • 801 Pages
  • April 2025
  • Region: Global
  • Future Markets, Inc
  • ID: 6060778

Bio-based polymers are polymers produced from biological sources/renewable feedstock/biodegradable materials, offering a sustainable alternative to petroleum-based plastics. Currently representing approximately 1% of global polymer production with 4.2 million tonnes annually, bio-based polymers are projected to expand at a compound annual growth rate (CAGR) of 13-15% through 2035 - substantially outpacing the conventional polymer market's modest 2-3% growth trajectory. By 2035, this sustained growth could elevate the bio-based polymer market to approximately 25-30 million tonnes annually, capturing 4-5% of global polymer production. This expansion will be driven by accelerating transitions toward circular economy principles, tightening regulatory frameworks on conventional plastics, and technological breakthroughs improving performance-to-cost ratios across the bio-polymer spectrum.

Bio-based biodegradable polymers have established substantial production capacities, though with moderate utilization rates averaging 65%. These are expected to grow at an impressive 17% CAGR through 2029. In contrast, bio-based non-biodegradable polymers demonstrate higher utilization rates of approximately 90% but are projected to grow at a more modest 10% CAGR during the same period. This differentiation highlights the varying market dynamics and technical maturity across different bio-based polymer categories.

Currently, the market is dominated by several established bio-based polymers. Cellulose acetate (CA) and epoxy resins collectively account for over half of the bio-based production volume. Other significant contributors include polyurethanes, polylactic acid, polyamides, and polytrimethylene terephthalate. Emerging polymers like polyhydroxyalkanoates (PHA), polyethylene furanoate (PEF), and casein polymers account for smaller market shares but are poised for substantial growth.

The regional distribution of production capacity reveals Asia's dominance, primarily focusing on PLA and PA production. North America follows, mainly producing PLA and PTT, while Europe primarily produces SCPC and PA. North America is expected to demonstrate the strongest regional growth at 25% CAGR, driven by expansions in PHA and PP production capacity. Market applications for bio-based polymers span numerous sectors. The fiber industry (woven and non-woven) represents the largest application segment, followed by packaging, functional applications, consumer goods, and automotive/transport. Other important but smaller segments include building and construction, electronics, and agriculture.

The growth trajectory is supported by several key market drivers. Global brands are increasingly adopting strategic agendas aligned with sustainability goals, seeking to transition toward climate-friendly solutions and circular economy principles. The concept of renewable carbon-derived from biomass, CO2 capture, and recycling-is gaining traction as an alternative to fossil carbon sources. However, significant regional differences exist in policy support and market development, with Europe potentially losing market share despite its ambitious sustainability policies.

Feedstock utilization for bio-based polymers remains highly efficient, with only 0.023% of global biomass production directed toward bio-based polymers. The main feedstocks are sugars and starch obtained from high-yield crops, alongside glycerol, a by-product from biodiesel production. This efficiency translates to minimal land use impact, with just 0.013% of agricultural land indirectly supporting bio-based polymer production. Looking forward, particularly promising growth is expected for PP, PHA, and PEF. 

The Global Market for Bio-Based Polymers 2025-2035 provides unparalleled insights into the rapidly evolving global bio-based polymers market, offering strategic intelligence on production capacities, market trends, and growth projections for 2025-2035. With detailed analysis of over 600 companies, innovative technologies, and emerging applications, this report serves as an essential resource for stakeholders across the sustainable materials value chain.

Report contents include: 

  • Bio-Based Feedstocks and Intermediates: Comprehensive examination of biorefinery technologies, feedstock sustainability, land use impacts, and detailed profiles of plant-based feedstocks including:
    • Starch-derived intermediates (glucose, lysine, sorbitol)
    • Sugar crop derivatives (fructose, 5-HMF, 2,5-FDCA)
    • Lignocellulosic biomass components (hemicellulose, lignin)
    • Plant oils and non-edible milk sources
    • Waste-derived feedstocks (food, agricultural, forestry, municipal)
    • Microbial, mineral, and gaseous sources
  • Market Analysis by Polymer Type: In-depth evaluation of 17  commercial bio-based polymers with production data, capacity forecasts, application profiles, and competitive landscapes for:
    • Synthetic bio-based polymers (PLA, PET, PTT, PEF, PA, PBAT, PBS, PE, PP)
    • Natural bio-based polymers (PHAs, cellulose-based polymers, protein-based polymers)
    • Emerging polymer categories (algal, fungal, chitosan-based materials)
  • Natural Fibers Market: Detailed assessment of natural fiber types, manufacturing methods, properties, and market applications, including:
    • Plant-based fibers (seed, bast, leaf, fruit fibers)
    • Animal-based fibers (wool, silk, leather alternatives)
    • Composite applications across aerospace, automotive, construction, and consumer goods
  • Regional Market Analysis: Granular breakdown of production capacities, market dynamics, policy frameworks, and growth projections across:
    • North America
    • Europe
    • Asia-Pacific (with dedicated sections on China, Japan, Thailand)
    • Latin America
  • End-Use Market Segments: Targeted analysis of application sectors including:
    • Packaging (flexible and rigid)
    • Consumer goods
    • Automotive and transportation
    • Building and construction
    • Textiles and fibers
    • Electronics
    • Agriculture and horticulture
  • Sustainability and Environmental Impact: Critical assessment of:
    • Life cycle considerations for bio-based polymers
    • Carbon footprint comparisons with fossil-based alternatives
    • Land use efficiency and feedstock sustainability metrics
    • Biodegradability and composability standards
  • Technology Roadmaps: Forward-looking analysis of:
    • Next-generation polymer production technologies
    • Integration opportunities with chemical recycling
    • Novel feedstock developments
    • Emerging application areas
  • Company Profiles: Comprehensive profiles of 620  companies across the bio-based polymer value chain, from feedstock suppliers to polymer producers and end-product manufacturers and many more across the entire bio-based polymer value chain from pioneering startups to established multinational corporations.

This report delivers crucial market intelligence for:

  • Chemical and materials companies exploring sustainable portfolio expansion
  • Packaging manufacturers navigating regulatory and consumer-driven sustainability demands
  • Investors evaluating opportunities in the bio-based materials space
  • Policy makers developing frameworks for the bioeconomy
  • R&D leaders prioritizing innovation pathways
  • Sustainability professionals benchmarking materials options

With 200  tables and 260  figures presenting granular data on production volumes, capacity projections, regional market shares, and application segmentation, this report provides the analytical foundation for strategic decision-making in the rapidly evolving bio-based polymer landscape.

Table of Contents

1 EXECUTIVE SUMMARY
1.1 Global Plastics Market and Supply
1.2 Recycling Polymers
1.3 Bio-based and Biodegradable vs. Non-biodegradable Polymers
1.4 Regional Distribution
1.5 Future Growth Prospects
1.6 Capacity Utilization Rates by Polymer Type
1.7 Next Generation Bio-based Polymers
1.8 Integration with Chemical Recycling
1.9 Novel Feedstock Sources
1.10 Investment Trends and Market Forecasts
1.11 Environmental Impact and Sustainability
1.11.1 Life Cycle Assessment of Bio-based Polymers
1.11.2 Land Use and Feedstock Sustainability
1.11.3 Carbon Footprint Comparison with Fossil-based Alternatives
1.12 Bio-based Polymers Regulations

2 BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET
2.1 BIOREFINERIES
2.2 BIO-BASED FEEDSTOCK AND LAND USE
2.3 PLANT-BASED
2.3.1 STARCH
2.3.1.1 Overview
2.3.1.2 Sources
2.3.1.3 Global production
2.3.1.4 Lysine
2.3.1.4.1 Source
2.3.1.4.2 Applications
2.3.1.4.3 Global production
2.3.1.5 Glucose
2.3.1.5.1 HMDA
2.3.1.5.1.1 Overview
2.3.1.5.1.2 Sources
2.3.1.5.1.3 Applications
2.3.1.5.1.4 Global production
2.3.1.5.2 1,5-diaminopentane (DA5)
2.3.1.5.2.1 Overview
2.3.1.5.2.2 Sources
2.3.1.5.2.3 Applications
2.3.1.5.2.4 Global production
2.3.1.5.3 Sorbitol
2.3.1.5.3.1 Isosorbide
2.3.1.5.3.1.1 Overview
2.3.1.5.3.1.2 Sources
2.3.1.5.3.1.3 Applications
2.3.1.5.3.1.4 Global production
2.3.1.5.4 Lactic acid
2.3.1.5.4.1 Overview
2.3.1.5.4.2 D-lactic acid
2.3.1.5.4.3 L-lactic acid
2.3.1.5.4.4 Lactide
2.3.1.5.5 Itaconic acid
2.3.1.5.5.1 Overview
2.3.1.5.5.2 Sources
2.3.1.5.5.3 Applications
2.3.1.5.5.4 Global production
2.3.1.5.6 3-HP
2.3.1.5.6.1 Overview
2.3.1.5.6.2 Sources
2.3.1.5.6.3 Applications
2.3.1.5.6.4 Global production
2.3.1.5.6.5 Acrylic acid
2.3.1.5.6.5.1 Overview
2.3.1.5.6.5.2 Applications
2.3.1.5.6.5.3 Global production
2.3.1.5.6.6 1,3-Propanediol (1,3-PDO)
2.3.1.5.6.6.1 Overview
2.3.1.5.6.6.2 Applications
2.3.1.5.6.6.3 Global production
2.3.1.5.7 Succinic Acid
2.3.1.5.7.1 Overview
2.3.1.5.7.2 Sources
2.3.1.5.7.3 Applications
2.3.1.5.7.4 Global production
2.3.1.5.7.5 1,4-Butanediol (1,4-BDO)
2.3.1.5.7.5.1 Overview
2.3.1.5.7.5.2 Applications
2.3.1.5.7.5.3 Gobal production
2.3.1.5.7.6 Tetrahydrofuran (THF)
2.3.1.5.7.6.1 Overview
2.3.1.5.7.6.2 Applications
2.3.1.5.7.6.3 Global production
2.3.1.5.8 Adipic acid
2.3.1.5.8.1 Overview
2.3.1.5.8.2 Applications
2.3.1.5.8.3 Caprolactame
2.3.1.5.8.3.1 Overview
2.3.1.5.8.3.2 Applications
2.3.1.5.8.3.3 Global production
2.3.1.5.9 Isobutanol
2.3.1.5.9.1 Overview
2.3.1.5.9.2 Sources
2.3.1.5.9.3 Applications
2.3.1.5.9.4 Global production
2.3.1.5.9.5 p-Xylene
2.3.1.5.9.5.1 Overview
2.3.1.5.9.5.2 Sources
2.3.1.5.9.5.3 Applications
2.3.1.5.9.5.4 Global production
2.3.1.5.9.5.5 Terephthalic acid
2.3.1.5.9.5.6 Overview
2.3.1.5.10 1,3 Proppanediol
2.3.1.5.10.1 Overview
2.3.1.5.10.2 Sources
2.3.1.5.10.3 Applications
2.3.1.5.10.4 Global production
2.3.1.5.11 Monoethylene glycol (MEG)
2.3.1.5.11.1 Overview
2.3.1.5.11.2 Sources
2.3.1.5.11.3 Applications
2.3.1.5.11.4 Global production
2.3.1.5.12 Ethanol
2.3.1.5.12.1 Overview
2.3.1.5.12.2 Sources
2.3.1.5.12.3 Applications
2.3.1.5.12.4 Global production
2.3.1.5.12.5 Ethylene
2.3.1.5.12.5.1 Overview
2.3.1.5.12.5.2 Applications
2.3.1.5.12.5.3 Global production
2.3.1.5.12.5.4 Propylene
2.3.1.5.12.5.5 Vinyl chloride
2.3.1.5.12.6 Methly methacrylate
2.3.2 SUGAR CROPS
2.3.2.1 Saccharose
2.3.2.1.1 Aniline
2.3.2.1.1.1 Overview
2.3.2.1.1.2 Applications
2.3.2.1.1.3 Global production
2.3.2.1.2 Fructose
2.3.2.1.2.1 Overview
2.3.2.1.2.2 Applications
2.3.2.1.2.3 Global production
2.3.2.1.2.4 5-Hydroxymethylfurfural (5-HMF)
2.3.2.1.2.4.1 Overview
2.3.2.1.2.4.2 Applications
2.3.2.1.2.4.3 Global production
2.3.2.1.2.5 5-Chloromethylfurfural (5-CMF)
2.3.2.1.2.5.1 Overview
2.3.2.1.2.5.2 Applications
2.3.2.1.2.5.3 Global production
2.3.2.1.2.6 Levulinic Acid
2.3.2.1.2.6.1 Overview
2.3.2.1.2.6.2 Applications
2.3.2.1.2.6.3 Global production
2.3.2.1.2.7 FDME
2.3.2.1.2.7.1 Overview
2.3.2.1.2.7.2 Applications
2.3.2.1.2.7.3 Global production
2.3.2.1.2.8 2,5-FDCA
2.3.2.1.2.8.1 Overview
2.3.2.1.2.8.2 Applications
2.3.2.1.2.8.3 Global production
2.3.3 LIGNOCELLULOSIC BIOMASS
2.3.3.1 Levoglucosenone
2.3.3.1.1 Overview
2.3.3.1.2 Applications
2.3.3.1.3 Global production
2.3.3.2 Hemicellulose
2.3.3.2.1 Overview
2.3.3.2.2 Biochemicals from hemicellulose
2.3.3.2.3 Global production
2.3.3.2.4 Furfural
2.3.3.2.4.1 Overview
2.3.3.2.4.2 Applications
2.3.3.2.4.3 Global production
2.3.3.2.4.4 Furfuyl alcohol
2.3.3.2.4.4.1 Overview
2.3.3.2.4.4.2 Applications
2.3.3.2.4.4.3 Global production
2.3.3.3 Lignin
2.3.3.3.1 Overview
2.3.3.3.2 Sources
2.3.3.3.3 Applications
2.3.3.3.3.1 Aromatic compounds
2.3.3.3.3.1.1 Benzene, toluene and xylene
2.3.3.3.3.1.2 Phenol and phenolic resins
2.3.3.3.3.1.3 Vanillin
2.3.3.3.3.2 Polymers
2.3.3.3.4 Global production
2.3.4 PLANT OILS
2.3.4.1 Overview
2.3.4.2 Glycerol
2.3.4.2.1 Overview
2.3.4.2.2 Applications
2.3.4.2.3 Global production
2.3.4.2.4 MPG
2.3.4.2.4.1 Overview
2.3.4.2.4.2 Applications
2.3.4.2.4.3 Global production
2.3.4.2.5 ECH
2.3.4.2.5.1 Overview
2.3.4.2.5.2 Applications
2.3.4.2.5.3 Global production
2.3.4.3 Fatty acids
2.3.4.3.1 Overview
2.3.4.3.2 Applications
2.3.4.3.3 Global production
2.3.4.4 Castor oil
2.3.4.4.1 Overview
2.3.4.4.2 Sebacic acid
2.3.4.4.2.1 Overview
2.3.4.4.2.2 Applications
2.3.4.4.2.3 Global production
2.3.4.4.3 11-Aminoundecanoic acid (11-AA)
2.3.4.4.3.1 Overview
2.3.4.4.3.2 Applications
2.3.4.4.3.3 Global production
2.3.4.5 Dodecanedioic acid (DDDA)
2.3.4.5.1 Overview
2.3.4.5.2 Applications
2.3.4.5.3 Global production
2.3.4.6 Pentamethylene diisocyanate
2.3.4.6.1 Overview
2.3.4.6.2 Applications
2.3.4.6.3 Global production
2.3.5 NON-EDIBIBLE MILK
2.3.5.1 Casein
2.3.5.1.1 Overview
2.3.5.1.2 Applications
2.3.5.1.3 Global production
2.4 WASTE
2.4.1 Food waste
2.4.1.1 Overview
2.4.1.2 Products and applications
2.4.1.2.1 Global production
2.4.2 Agricultural waste
2.4.2.1 Overview
2.4.2.2 Products and applications
2.4.2.3 Global production
2.4.3 Forestry waste
2.4.3.1 Overview
2.4.3.2 Products and applications
2.4.3.3 Global production
2.4.4 Aquaculture/fishing waste
2.4.4.1 Overview
2.4.4.2 Products and applications
2.4.4.3 Global production
2.4.5 Municipal solid waste
2.4.5.1 Overview
2.4.5.2 Products and applications
2.4.5.3 Global production
2.4.6 Industrial waste
2.4.6.1 Overview
2.4.7 Waste oils
2.4.7.1 Overview
2.4.7.2 Products and applications
2.4.7.3 Global production
2.5 MICROBIAL & MINERAL SOURCES
2.5.1 Microalgae
2.5.1.1 Overview
2.5.1.2 Products and applications
2.5.1.3 Global production
2.5.2 Macroalgae
2.5.2.1 Overview
2.5.2.2 Products and applications
2.5.2.3 Global production
2.5.3 Mineral sources
2.5.3.1 Overview
2.5.3.2 Products and applications
2.6 GASEOUS
2.6.1 Biogas
2.6.1.1 Overview
2.6.1.2 Products and applications
2.6.1.3 Global production
2.6.2 Syngas
2.6.2.1 Overview
2.6.2.2 Products and applications
2.6.2.3 Global production
2.6.3 Off gases - fermentation CO2, CO
2.6.3.1 Overview
2.6.3.2 Products and applications
2.7 BIO-BASED FEEDSTOCKS AND INTERMEDIATES COMPANY PROFILES (116 company profiles)

3 BIO-BASED POLYMERS
3.1 BIO-BASED OR RENEWABLE PLASTICS
3.1.1 Drop-in bio-based plastics
3.1.2 Novel bio-based plastics
3.2 BIODEGRADABLE AND COMPOSTABLE PLASTICS
3.2.1 Biodegradability
3.2.2 Compostability
3.3 TYPES
3.4 KEY MARKET PLAYERS
3.5 SYNTHETIC BIO-BASED POLYMERS
3.5.1 Aliphatic polycarbonates (APC) - cyclic and linear
3.5.1.1 Market analysis
3.5.1.2 Production
3.5.1.3 Applications
3.5.1.4 Producers
3.5.2 Polylactic acid (Bio-PLA)
3.5.2.1 Market analysis
3.5.2.2 Production
3.5.2.3 Producers and production capacities, current and planned
3.5.2.3.1 Lactic acid producers and production capacities
3.5.2.3.2 PLA producers and production capacities
3.5.2.3.3 Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
3.5.3 Polyethylene terephthalate (Bio-PET)
3.5.3.1 Market analysis
3.5.3.2 Producers and production capacities
3.5.3.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
3.5.4 Polytrimethylene terephthalate (Bio-PTT)
3.5.4.1 Market analysis
3.5.4.2 Producers and production capacities
3.5.4.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
3.5.5 Polyethylene furanoate (Bio-PEF)
3.5.5.1 Market analysis
3.5.5.2 Comparative properties to PET
3.5.5.3 Producers and production capacities
3.5.5.3.1 FDCA and PEF producers and production capacities
3.5.5.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes)
3.5.6 Polyamides (Bio-PA)
3.5.6.1 Market analysis
3.5.6.2 Producers and production capacities
3.5.6.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
3.5.7 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
3.5.7.1 Market analysis
3.5.7.2 Producers and production capacities
3.5.7.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
3.5.8 Polybutylene succinate (PBS) and copolymers
3.5.8.1 Market analysis
3.5.8.2 Producers and production capacities
3.5.8.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
3.5.9 Polyethylene (Bio-PE)
3.5.9.1 Market analysis
3.5.9.2 Producers and production capacities
3.5.9.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes)
3.5.10 Polypropylene (Bio-PP)
3.5.10.1 Market analysis
3.5.10.2 Producers and production capacities
3.5.10.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)
3.5.11 Superabsorbent polymers
3.5.11.1 Market analysis
3.5.11.2 Production
3.5.11.3 Applications
3.5.11.4 Producers
3.6 NATURAL BIO-BASED POLYMERS
3.6.1 Polyhydroxyalkanoates (PHA)
3.6.1.1 Technology description
3.6.1.2 Types
3.6.1.2.1 PHB
3.6.1.2.2 PHBV
3.6.1.3 Synthesis and production processes
3.6.1.4 Market analysis
3.6.1.5 Commercially available PHAs
3.6.1.6 Markets for PHAs
3.6.1.6.1 Packaging
3.6.1.6.2 Cosmetics
3.6.1.6.2.1 PHA microspheres
3.6.1.6.3 Medical
3.6.1.6.3.1 Tissue engineering
3.6.1.6.3.2 Drug delivery
3.6.1.6.4 Agriculture
3.6.1.6.4.1 Mulch film
3.6.1.6.4.2 Grow bags
3.6.1.7 Producers and production capacities
3.6.1.8 PHA production capacities 2019-2035 (1,000 tonnes)
3.6.2 Cellulose
3.6.2.1 Cellulose acetate (CA)
3.6.2.1.1 Market analysis
3.6.2.1.2 Production
3.6.2.1.3 Applications
3.6.2.1.4 Producers
3.6.2.2 Microfibrillated cellulose (MFC)
3.6.2.2.1 Market analysis
3.6.2.2.2 Producers and production capacities
3.6.2.3 Nanocellulose
3.6.2.3.1 Cellulose nanocrystals
3.6.2.3.1.1 Synthesis
3.6.2.3.1.2 Properties
3.6.2.3.1.3 Production
3.6.2.3.1.4 Applications
3.6.2.3.1.5 Market analysis
3.6.2.3.1.6 Producers and production capacities
3.6.2.3.2 Cellulose nanofibers
3.6.2.3.2.1 Applications
3.6.2.3.2.2 Market analysis
3.6.2.3.2.3 Producers and production capacities
3.6.2.3.3 Bacterial Nanocellulose (BNC)
3.6.2.3.3.1 Production
3.6.2.3.3.2 Applications
3.6.3 Protein-based bio-polymers
3.6.3.1 Types, applications and producers
3.6.3.2 Casein polymers
3.6.3.2.1 Market analysis
3.6.3.2.2 Production
3.6.3.2.3 Applications
3.6.3.2.4 Producers
3.6.4 Algal and fungal
3.6.4.1 Algal
3.6.4.1.1 Advantages
3.6.4.1.2 Production
3.6.4.1.3 Producers
3.6.4.2 Mycelium
3.6.4.2.1 Properties
3.6.4.2.2 Applications
3.6.4.2.3 Commercialization
3.6.5 Chitosan
3.6.5.1 Technology description
3.7 NATURAL FIBERS
3.7.1 Manufacturing method, matrix materials and applications of natural fibers
3.7.2 Advantages of natural fibers
3.7.3 Commercially available next-gen natural fiber products
3.7.4 Market drivers for next-gen natural fibers
3.7.5 Challenges
3.7.6 Plants (cellulose, lignocellulose)
3.7.6.1 Seed fibers
3.7.6.1.1 Cotton
3.7.6.1.1.1 Production volumes 2018-2035
3.7.6.1.2 Kapok
3.7.6.1.2.1 Production volumes 2018-2035
3.7.6.1.3 Luffa
3.7.6.2 Bast fibers
3.7.6.2.1 Jute
3.7.6.2.2 Production volumes 2018-2035
3.7.6.2.2.1 Hemp
3.7.6.2.2.2 Production volumes 2018-2035
3.7.6.2.3 Flax
3.7.6.2.3.1 Production volumes 2018-2035
3.7.6.2.4 Ramie
3.7.6.2.4.1 Production volumes 2018-2035
3.7.6.2.5 Kenaf
3.7.6.2.5.1 Production volumes 2018-2035
3.7.6.3 Leaf fibers
3.7.6.3.1 Sisal
3.7.6.3.1.1 Production volumes 2018-2035
3.7.6.3.2 Abaca
3.7.6.3.2.1 Production volumes 2018-2035
3.7.6.4 Fruit fibers
3.7.6.4.1 Coir
3.7.6.4.1.1 Production volumes 2018-2035
3.7.6.4.2 Banana
3.7.6.4.2.1 Production volumes 2018-2035
3.7.6.4.3 Pineapple
3.7.6.5 Stalk fibers from agricultural residues
3.7.6.5.1 Rice fiber
3.7.6.5.2 Corn
3.7.6.6 Cane, grasses and reed
3.7.6.6.1 Switch grass
3.7.6.6.2 Sugarcane (agricultural residues)
3.7.6.6.3 Bamboo
3.7.6.6.3.1 Production volumes 2018-2035
3.7.6.6.4 Fresh grass (green biorefinery)
3.7.7 Animal (fibrous protein)
3.7.7.1 Wool
3.7.7.1.1 Alternative wool materials
3.7.7.1.2 Producers
3.7.7.2 Silk fiber
3.7.7.2.1 Alternative silk materials
3.7.7.2.1.1 Producers
3.7.7.3 Leather
3.7.7.3.1 Alternative leather materials
3.7.7.3.1.1 Producers
3.7.7.4 Fur
3.7.7.4.1 Producers
3.7.7.5 Down
3.7.7.5.1 Alternative down materials
3.7.7.5.1.1 Producers
3.7.8 Markets for natural fibers
3.7.8.1 Composites
3.7.8.2 Applications
3.7.8.3 Natural fiber injection moulding compounds
3.7.8.3.1 Properties
3.7.8.3.2 Applications
3.7.8.4 Non-woven natural fiber mat composites
3.7.8.4.1 Automotive
3.7.8.4.2 Applications
3.7.8.5 Aligned natural fiber-reinforced composites
3.7.8.6 Natural fiber biobased polymer compounds
3.7.8.7 Natural fiber biobased polymer non-woven mats
3.7.8.7.1 Flax
3.7.8.7.2 Kenaf
3.7.8.8 Natural fiber thermoset bioresin composites
3.7.8.9 Aerospace
3.7.8.9.1 Market overview
3.7.8.10 Automotive
3.7.8.10.1 Market overview
3.7.8.10.2 Applications of natural fibers
3.7.8.11 Building/construction
3.7.8.11.1 Market overview
3.7.8.11.2 Applications of natural fibers
3.7.8.12 Sports and leisure
3.7.8.12.1 Market overview
3.7.8.13 Textiles
3.7.8.13.1 Market overview
3.7.8.13.2 Consumer apparel
3.7.8.13.3 Geotextiles
3.7.8.14 Packaging
3.7.8.14.1 Market overview
3.7.9 Global production of natural fibers
3.7.9.1 Overall global fibers market
3.7.9.2 Plant-based fiber production
3.7.9.3 Animal-based natural fiber production
3.8 LIGNIN
3.8.1 Introduction
3.8.1.1 What is lignin?
3.8.1.1.1 Lignin structure
3.8.1.2 Types of lignin
3.8.1.2.1 Sulfur containing lignin
3.8.1.2.2 Sulfur-free lignin from biorefinery process
3.8.1.3 Properties
3.8.1.4 The lignocellulose biorefinery
3.8.1.5 Markets and applications
3.8.1.6 Challenges for using lignin
3.8.2 Lignin production processes
3.8.2.1 Lignosulphonates
3.8.2.2 Kraft Lignin
3.8.2.2.1 LignoBoost process
3.8.2.2.2 LignoForce method
3.8.2.2.3 Sequential Liquid Lignin Recovery and Purification
3.8.2.2.4 A-Recovery
3.8.2.3 Soda lignin
3.8.2.4 Biorefinery lignin
3.8.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes
3.8.2.5 Organosolv lignins
3.8.2.6 Hydrolytic lignin
3.8.3 Markets for lignin
3.8.3.1 Market drivers and trends for lignin
3.8.3.2 Production capacities
3.8.3.2.1 Technical lignin availability (dry ton/y)
3.8.3.2.2 Biomass conversion (Biorefinery)
3.8.3.3 Estimated consumption of lignin
3.8.3.4 Prices
3.8.3.5 Heat and power energy
3.8.3.6 Pyrolysis and syngas
3.8.3.7 Aromatic compounds
3.8.3.7.1 Benzene, toluene and xylene
3.8.3.7.2 Phenol and phenolic resins
3.8.3.7.3 Vanillin
3.8.3.8 Plastics and polymers
3.9 END USE MARKETS FOR BIO-BASED POLYMERS
3.9.1 Packaging (Flexible and Rigid)
3.9.1.1 Processes for bioplastics in packaging
3.9.1.2 Applications
3.9.1.3 Flexible packaging
3.9.1.3.1 Production volumes 2019-2035
3.9.1.4 Rigid packaging
3.9.1.4.1 Production volumes 2019-2035
3.9.2 Consumer Goods
3.9.2.1 Applications
3.9.2.2 Production volumes 2019-2035
3.9.3 Automotive
3.9.3.1 Applications
3.9.3.2 Production volumes 2019-2035
3.9.4 Building and Construction
3.9.4.1 Applications
3.9.4.2 Production volumes 2019-2035
3.9.5 Textiles and Fibers
3.9.5.1 Apparel
3.9.5.2 Footwear
3.9.5.3 Medical textiles
3.9.5.4 Production volumes 2019-2035
3.9.6 Electronics
3.9.6.1 Applications
3.9.6.2 Production volumes 2019-2035
3.9.7 Agriculture and Horticulture
3.9.7.1 Production volumes 2019-2035
3.9.8 Production of Biopolymers, by region
3.9.8.1 North America
3.9.8.2 Europe
3.9.8.3 Asia-Pacific
3.9.8.3.1 China
3.9.8.3.2 Japan
3.9.8.3.3 Thailand
3.9.8.3.4 Indonesia
3.9.8.4 Latin America
3.10 BIO-BASED POLYMERS COMPANY PROFILES (520 company profiles)

4 RESEARCH METHODOLOGY5 REFERENCES
LIST OF TABLES
Table 1. Bio-based and Biodegradable vs. Non-biodegradable Polymers
Table 2. Capacity Utilization Rates by Polymer Type
Table 3. Next Generation Bio-based Polymers
Table 4. Novel Feedstock Sources
Table 5. Global bio-based polymers market, by type 2020-2025 (revenues)
Table 6. Global bio-based polymers market, by type 2020-2025 (metric tonnes)
Table 7. Life Cycle Assessment of Bio-based Polymers
Table 8. Carbon Footprint Comparison with Fossil-based Alternatives
Table 9. Plant-based feedstocks and biochemicals produced
Table 10. Waste-based feedstocks and biochemicals produced
Table 11. Microbial and mineral-based feedstocks and biochemicals produced
Table 12. Common starch sources that can be used as feedstocks for producing biochemicals
Table 13. Common lysine sources that can be used as feedstocks for producing biochemicals
Table 14. Applications of lysine as a feedstock for biochemicals
Table 15. HDMA sources that can be used as feedstocks for producing biochemicals
Table 16. Applications of bio-based HDMA
Table 17. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5)
Table 18. Applications of DN5
Table 19. Biobased feedstocks for isosorbide
Table 20. Applications of bio-based isosorbide
Table 21. Lactide applications
Table 22. Biobased feedstock sources for itaconic acid
Table 23. Applications of bio-based itaconic acid
Table 24. Biobased feedstock sources for 3-HP
Table 25. Applications of 3-HP
Table 26. Applications of bio-based acrylic acid
Table 27. Applications of bio-based 1,3-Propanediol (1,3-PDO)
Table 28. Biobased feedstock sources for Succinic acid
Table 29. Applications of succinic acid
Table 30. Applications of bio-based 1,4-Butanediol (BDO)
Table 31. Applications of bio-based Tetrahydrofuran (THF)
Table 32. Applications of bio-based adipic acid
Table 33. Applications of bio-based caprolactam
Table 34. Biobased feedstock sources for isobutanol
Table 35. Applications of bio-based isobutanol
Table 36. Biobased feedstock sources for p-Xylene
Table 37. Applications of bio-based p-Xylene
Table 38. Applications of bio-based Terephthalic acid (TPA)
Table 39. Biobased feedstock sources for 1,3 Proppanediol
Table 40. Applications of bio-based 1,3 Proppanediol
Table 41. Biobased feedstock sources for MEG
Table 42. Applications of bio-based MEG
Table 43. Biobased MEG producers capacities
Table 44. Biobased feedstock sources for ethanol
Table 45. Applications of bio-based ethanol
Table 46. Applications of bio-based ethylene
Table 47. Applications of bio-based propylene
Table 48. Applications of bio-based vinyl chloride
Table 49. Applications of bio-based Methly methacrylate
Table 50. Applications of bio-based aniline
Table 51. Applications of biobased fructose
Table 52. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF)
Table 53. Applications of 5-(Chloromethyl)furfural (CMF)
Table 54. Applications of Levulinic acid
Table 55. Markets and applications for bio-based FDME
Table 56. Applications of FDCA
Table 57. Markets and applications for bio-based levoglucosenone
Table 58. Biochemicals derived from hemicellulose
Table 59. Markets and applications for bio-based hemicellulose
Table 60. Markets and applications for bio-based furfuryl alcohol
Table 61. Commercial and pre-commercial biorefinery lignin production facilities and processes
Table 62. Lignin aromatic compound products
Table 63. Prices of benzene, toluene, xylene and their derivatives
Table 64. Lignin products in polymeric materials
Table 65. Application of lignin in plastics and composites
Table 66. Markets and applications for bio-based glycerol
Table 67. Markets and applications for Bio-based MPG
Table 68. Markets and applications: Bio-based ECH
Table 69. Mineral source products and applications
Table 70. Type of biodegradation
Table 71. Advantages and disadvantages of biobased plastics compared to conventional plastics
Table 72. Types of Bio-based and/or Biodegradable Plastics, applications
Table 73. Key market players by Bio-based and/or Biodegradable Plastic types
Table 74. Aliphatic polycarbonates (APC) - cyclic and linear production 2019-2035 (1,000 tonnes)
Table 75. Aliphatic polycarbonates (APC) - cyclic and linear Applications
Table 76. Aliphatic polycarbonates (APC) producers
Table 77. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
Table 78. Lactic acid producers and production capacities
Table 79. PLA producers and production capacities
Table 80. Planned PLA capacity expansions in China
Table 81. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications
Table 82. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
Table 83. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications
Table 84. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
Table 85. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
Table 86. PEF vs. PET
Table 87. FDCA and PEF producers
Table 88. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications
Table 89. Leading Bio-PA producers production capacities
Table 90. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications
Table 91. Leading PBAT producers, production capacities and brands
Table 92. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications
Table 93. Leading PBS producers and production capacities
Table 94. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications
Table 95. Leading Bio-PE producers
Table 96. Bio-PP market analysis- manufacture, advantages, disadvantages and applications
Table 97. Leading Bio-PP producers and capacities
Table 98. Superabsorbent polymers production 2019-2035 (1,000 tonnes)
Table 99. Superabsorbent polymers Applications
Table 100. Superabsorbent polymers producers
Table 101.Types of PHAs and properties
Table 102. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
Table 103. Polyhydroxyalkanoate (PHA) extraction methods
Table 104. Polyhydroxyalkanoates (PHA) market analysis
Table 105. Commercially available PHAs
Table 106. Markets and applications for PHAs
Table 107. Applications, advantages and disadvantages of PHAs in packaging
Table 108. Polyhydroxyalkanoates (PHA) producers
Table 109. Cellulose acetate (CA) production 2019-2035 (1,000 tonnes)
Table 110. Cellulose acetate (CA) applications
Table 111. Cellulose acetate (CA) producers
Table 112. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications
Table 113. Leading MFC producers and capacities
Table 114. Synthesis methods for cellulose nanocrystals (CNC)
Table 115. CNC sources, size and yield
Table 116. CNC properties
Table 117. Mechanical properties of CNC and other reinforcement materials
Table 118. Applications of nanocrystalline cellulose (NCC)
Table 119. Cellulose nanocrystals analysis
Table 120: Cellulose nanocrystal production capacities and production process, by producer
Table 121. Applications of cellulose nanofibers (CNF)
Table 122. Cellulose nanofibers market analysis
Table 123. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes
Table 124. Applications of bacterial nanocellulose (BNC)
Table 125. Types of protein based-bioplastics, applications and companies
Table 126. Casein polymers production 2019-2035 (1,000 tonnes)
Table 127. Casein polymers applications
Table 128. Casein polymers producers
Table 129. Types of algal and fungal based-bioplastics, applications and companies
Table 130. Overview of alginate-description, properties, application and market size
Table 131. Companies developing algal-based bioplastics
Table 132. Overview of mycelium fibers-description, properties, drawbacks and applications
Table 133. Companies developing mycelium-based bioplastics
Table 134. Overview of chitosan-description, properties, drawbacks and applications
Table 135. Types of next-gen natural fibers
Table 136. Application, manufacturing method, and matrix materials of natural fibers
Table 137. Typical properties of natural fibers
Table 138. Commercially available next-gen natural fiber products
Table 139. Market drivers for natural fibers
Table 140. Overview of cotton fibers-description, properties, drawbacks and applications
Table 141. Overview of kapok fibers-description, properties, drawbacks and applications
Table 142. Overview of luffa fibers-description, properties, drawbacks and applications
Table 143. Overview of jute fibers-description, properties, drawbacks and applications
Table 144. Overview of hemp fibers-description, properties, drawbacks and applications
Table 145. Overview of flax fibers-description, properties, drawbacks and applications
Table 146. Overview of ramie fibers- description, properties, drawbacks and applications
Table 147. Overview of kenaf fibers-description, properties, drawbacks and applications
Table 148. Overview of sisal leaf fibers-description, properties, drawbacks and applications
Table 149. Overview of abaca fibers-description, properties, drawbacks and applications
Table 150. Overview of coir fibers-description, properties, drawbacks and applications
Table 151. Overview of banana fibers-description, properties, drawbacks and applications
Table 152. Overview of pineapple fibers-description, properties, drawbacks and applications
Table 153. Overview of rice fibers-description, properties, drawbacks and applications
Table 154. Overview of corn fibers-description, properties, drawbacks and applications
Table 155. Overview of switch grass fibers-description, properties and applications
Table 156. Overview of sugarcane fibers-description, properties, drawbacks and application and market size
Table 157. Overview of bamboo fibers-description, properties, drawbacks and applications
Table 158. Overview of wool fibers-description, properties, drawbacks and applications
Table 159. Alternative wool materials producers
Table 160. Overview of silk fibers-description, properties, application and market size
Table 161. Alternative silk materials producers
Table 162. Alternative leather materials producers
Table 163. Next-gen fur producers
Table 164. Alternative down materials producers
Table 165. Applications of natural fiber composites
Table 166. Typical properties of short natural fiber-thermoplastic composites
Table 167. Properties of non-woven natural fiber mat composites
Table 168. Properties of aligned natural fiber composites
Table 169. Properties of natural fiber-bio-based polymer compounds
Table 170. Properties of natural fiber-bio-based polymer non-woven mats
Table 171. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use
Table 172. Natural fiber-reinforced polymer composite in the automotive market
Table 173. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use
Table 174. Applications of natural fibers in the automotive industry
Table 175. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use
Table 176. Applications of natural fibers in the building/construction sector
Table 177. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use
Table 178. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use
Table 179. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use
Table 180. Technical lignin types and applications
Table 181. Classification of technical lignins
Table 182. Lignin content of selected biomass
Table 183. Properties of lignins and their applications
Table 184. Example markets and applications for lignin
Table 185. Processes for lignin production
Table 186. Biorefinery feedstocks
Table 187. Comparison of pulping and biorefinery lignins
Table 188. Commercial and pre-commercial biorefinery lignin production facilities and processes
Table 189. Market drivers and trends for lignin
Table 190. Production capacities of technical lignin producers
Table 191. Production capacities of biorefinery lignin producers
Table 192. Estimated consumption of lignin, 2019-2035 (000 MT)
Table 193. Prices of benzene, toluene, xylene and their derivatives
Table 194. Application of lignin in plastics and polymers
Table 195. Processes for bioplastics in packaging
Table 196. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging
Table 197. Typical applications for bioplastics in flexible packaging
Table 198. Typical applications for bioplastics in rigid packaging
Table 199. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes
Table 200. Biobased and sustainable plastics producers in North America
Table 201. Biobased and sustainable plastics producers in Europe
Table 202. Biobased and sustainable plastics producers in Asia-Pacific
Table 203. Biobased and sustainable plastics producers in Latin America
Table 204. Lactips plastic pellets
Table 205. Oji Holdings CNF products

LIST OF FIGURES
Figure 1. Global bio-based polymers market, by type 2020-2025 (revenues)
Figure 2. Global bio-based polymers market, by type 2020-2025 (metric tonnes)
Figure 3. Schematic of biorefinery processes
Figure 4. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes)
Figure 5. Global production of biobased lysine, 2018-2035 (metric tonnes)
Figure 6. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes)
Figure 7. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes
Figure 8. Global production of bio-based DN5, 2018-2035 (metric tonnes)
Figure 9. Global production of bio-based isosorbide, 2018-2035 (metric tonnes)
Figure 10. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes)
Figure 11. Global lactide production, 2018-2035 (metric tonnes)
Figure 12. Global production of bio-itaconic acid, 2018-2035 (metric tonnes)
Figure 13. Global production of 3-HP, 2018-2035 (metric tonnes)
Figure 14. Global production of bio-based acrylic acid, 2018-2035 (metric tonnes)
Figure 15. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes)
Figure 16. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes)
Figure 17. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes)
Figure 18. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes)
Figure 19. Overview of Toray process
Figure 20. Global production of bio-based caprolactam, 2018-2035 (metric tonnes)
Figure 21. Global production of bio-based isobutanol, 2018-2035 (metric tonnes)
Figure 22. Global production of bio-based p-xylene, 2018-2035 (metric tonnes)
Figure 23. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes)
Figure 24. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes)
Figure 25. Global production of biobased MEG, 2018-2035 (metric tonnes)
Figure 26. Global production of biobased ethanol, 2018-2035 (million metric tonnes)
Figure 27. Global production of biobased ethylene, 2018-2035 (million metric tonnes)
Figure 28. Global production of biobased propylene, 2018-2035 (metric tonnes)
Figure 29. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes)
Figure 30. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes)
Figure 31. Global production of biobased aniline, 2018-2035 (metric tonnes)
Figure 32. Global production of biobased fructose, 2018-2035 (metric tonnes)
Figure 33. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes)
Figure 34. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes)
Figure 35. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes)
Figure 36. Global production of biobased FDME, 2018-2035 (metric tonnes)
Figure 37. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes)
Figure 38. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes
Figure 39. Global production of hemicellulose, 2018-2035 (metric tonnes)
Figure 40. Global production of biobased furfural, 2018-2035 (metric tonnes)
Figure 41. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes)
Figure 42. Schematic of WISA plywood home
Figure 43. Global production of biobased lignin, 2018-2035 (metric tonnes)
Figure 44. Global production of biobased glycerol, 2018-2035 (metric tonnes)
Figure 45. Global production of Bio-MPG, 2018-2035 (metric tonnes)
Figure 46. Global production of biobased ECH, 2018-2035 (metric tonnes)
Figure 47. Global production of biobased fatty acids, 2018-2035 (million metric tonnes)
Figure 48. Global production of biobased sebacic acid, 2018-2035 (metric tonnes)
Figure 49. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes)
Figure 50. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes)
Figure 51. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes)
Figure 52. Global production of biobased casein, 2018-2035 (metric tonnes)
Figure 53. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes)
Figure 54. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes)
Figure 55. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes)
Figure 56. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes)
Figure 57. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes)
Figure 58. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes)
Figure 59. Global microalgae production, 2018-2035 (million metric tonnes)
Figure 60. Global macroalgae production, 2018-2035 (million metric tonnes)
Figure 61. Global production of biogas, 2018-2035 (billion m3)
Figure 62. Global production of syngas, 2018-2035 (billion m3)
Figure 63. formicobio™ technology
Figure 64. Domsjö process
Figure 65. TMP-Bio Process
Figure 66. Lignin gel
Figure 67. BioFlex process
Figure 68. LX Process
Figure 69. METNIN™ Lignin refining technology
Figure 70. Enfinity cellulosic ethanol technology process
Figure 71. Precision Photosynthesis™ technology
Figure 72. Fabric consisting of 70 per cent wool and 30 per cent Qmilk
Figure 73. UPM biorefinery process
Figure 74. The Proesa® Process
Figure 75. Goldilocks process and applications
Figure 76. Coca-Cola PlantBottle®
Figure 77. Interrelationship between conventional, bio-based and biodegradable plastics
Figure 78. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
Figure 79. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
Figure 80. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
Figure 81. Production capacities of Polyethylene furanoate (PEF) to 2025
Figure 82. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes)
Figure 83. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
Figure 84. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
Figure 85. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
Figure 86. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes)
Figure 87. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes)
Figure 88. PHA family
Figure 89. PHA production capacities 2019-2035 (1,000 tonnes)
Figure 90. TEM image of cellulose nanocrystals
Figure 91. CNC preparation
Figure 92. Extracting CNC from trees
Figure 93. CNC slurry
Figure 94. CNF gel
Figure 95. Bacterial nanocellulose shapes
Figure 96. BLOOM masterbatch from Algix
Figure 97. Typical structure of mycelium-based foam
Figure 98. Commercial mycelium composite construction materials
Figure 99. Types of natural fibers
Figure 100. Absolut natural based fiber bottle cap
Figure 101. Adidas algae-ink tees
Figure 102. Carlsberg natural fiber beer bottle
Figure 103. Miratex watch bands
Figure 104. Adidas Made with Nature Ultraboost 22
Figure 105. PUMA RE:SUEDE sneaker
Figure 106. Cotton production volume 2018-2035 (Million MT)
Figure 107. Kapok production volume 2018-2035 (MT)
Figure 108. Luffa cylindrica fiber
Figure 109. Jute production volume 2018-2035 (Million MT)
Figure 110. Hemp fiber production volume 2018-2035 ( MT)
Figure 111. Flax fiber production volume 2018-2035 (MT)
Figure 112. Ramie fiber production volume 2018-2035 (MT)
Figure 113. Kenaf fiber production volume 2018-2035 (MT)
Figure 114. Sisal fiber production volume 2018-2035 (MT)
Figure 115. Abaca fiber production volume 2018-2035 (MT)
Figure 116. Coir fiber production volume 2018-2035 (MILLION MT)
Figure 117. Banana fiber production volume 2018-2035 (MT)
Figure 118. Pineapple fiber
Figure 119. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019
Figure 120. Bamboo fiber production volume 2018-2035 (MILLION MT)
Figure 121. Conceptual landscape of next-gen leather materials
Figure 122. Hemp fibers combined with PP in car door panel
Figure 123. Car door produced from Hemp fiber
Figure 124. Mercedes-Benz components containing natural fibers
Figure 125. AlgiKicks sneaker, made with the Algiknit biopolymer gel
Figure 126. Coir mats for erosion control
Figure 127. Global fiber production in 2024, by fiber type, million MT and %
Figure 128. Global fiber production (million MT) to 2020-2035
Figure 129. Plant-based fiber production 2018-2035, by fiber type, MT
Figure 130. Animal based fiber production 2018-2035, by fiber type, million MT
Figure 131. High purity lignin
Figure 132. Lignocellulose architecture
Figure 133. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins
Figure 134. The lignocellulose biorefinery
Figure 135. LignoBoost process
Figure 136. LignoForce system for lignin recovery from black liquor
Figure 137. Sequential liquid-lignin recovery and purification (SLPR) system
Figure 138. A-Recovery chemical recovery concept
Figure 139. Schematic of a biorefinery for production of carriers and chemicals
Figure 140. Organosolv lignin
Figure 141. Hydrolytic lignin powder
Figure 142. Estimated consumption of lignin, 2019-2035 (000 MT)
Figure 143. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes
Figure 144. PHA bioplastics products
Figure 145. The global market for bio-based polymers for flexible packaging 2019-2033 (1,000 tonnes)
Figure 146. Production volumes for bio-based polymers for rigid packaging, 2019-2033 (1,000 tonnes)
Figure 147. Global production for bio-based polymers in consumer goods 2019-2035, in 1,000 tonnes
Figure 148. Global production capacities for bio-based polymers in automotive 2019-2035, in 1,000 tonnes
Figure 149. Global production volumes for bio-based polymers in building and construction 2019-2035, in 1,000 tonnes
Figure 150. Global production volumes for bio-based polymers in textiles and fibers 2019-2035, in 1,000 tonnes
Figure 151. Global production volumes for bio-based polymers in electronics 2019-2035, in 1,000 tonnes
Figure 152. Biodegradable mulch films
Figure 153. Global production volumes for bio-based polymers in agriculture 2019-2035, in 1,000 tonnes
Figure 154. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes
Figure 155. Production volumes for bio-based polymers in North America by type 2019-2035, in 1,000 tonnes
Figure 156. Production volumes for bio-based polymers in Europe by type 2019-2035, in 1,000 tonnes
Figure 157. Production volumes for bio-based polymers in China by type 2019-2035, in 1,000 tonnes
Figure 158. Production volumes for bio-based polymers in Japan by type 2019-2035, in 1,000 tonnes
Figure 159. Production volumes for bio-based polymers in Latin America by type 2019-2035, in 1,000 tonnes
Figure 160. Pluumo
Figure 161. ANDRITZ Lignin Recovery process
Figure 162. Anpoly cellulose nanofiber hydrogel
Figure 163. MEDICELLU™
Figure 164. Asahi Kasei CNF fabric sheet
Figure 165. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric
Figure 166. CNF nonwoven fabric
Figure 167. Roof frame made of natural fiber
Figure 168. Beyond Leather Materials product
Figure 169. BIOLO e-commerce mailer bag made from PHA
Figure 170. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc
Figure 171. Fiber-based screw cap
Figure 172. formicobio™ technology
Figure 173. nanoforest-S
Figure 174. nanoforest-PDP
Figure 175. nanoforest-MB
Figure 176. sunliquid® production process
Figure 177. CuanSave film
Figure 178. Celish
Figure 179. Trunk lid incorporating CNF
Figure 180. ELLEX products
Figure 181. CNF-reinforced PP compounds
Figure 182. Kirekira! toilet wipes
Figure 183. Color CNF
Figure 184. Rheocrysta spray
Figure 185. DKS CNF products
Figure 186. Domsjö process
Figure 187. Mushroom leather
Figure 188. CNF based on citrus peel
Figure 189. Citrus cellulose nanofiber
Figure 190. Filler Bank CNC products
Figure 191. Fibers on kapok tree and after processing
Figure 192. TMP-Bio Process
Figure 193. Flow chart of the lignocellulose biorefinery pilot plant in Leuna
Figure 194. Water-repellent cellulose
Figure 195. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
Figure 196. PHA production process
Figure 197. CNF products from Furukawa Electric
Figure 198. AVAPTM process
Figure 199. GreenPower ™ process
Figure 200. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
Figure 201. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
Figure 202. CNF gel
Figure 203. Block nanocellulose material
Figure 204. CNF products developed by Hokuetsu
Figure 205. Marine leather products
Figure 206. Inner Mettle Milk products
Figure 207. Kami Shoji CNF products
Figure 208. Dual Graft System
Figure 209. Engine cover utilizing Kao CNF composite resins
Figure 210. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended)
Figure 211. Kel Labs yarn
Figure 212. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side)
Figure 213. Lignin gel
Figure 214. BioFlex process
Figure 215. Nike Algae Ink graphic tee
Figure 216. LX Process
Figure 217. Made of Air's HexChar panels
Figure 218. TransLeather
Figure 219. Chitin nanofiber product
Figure 220. Marusumi Paper cellulose nanofiber products
Figure 221. FibriMa cellulose nanofiber powder
Figure 222. METNIN™ Lignin refining technology
Figure 223. IPA synthesis method
Figure 224. MOGU-Wave panels
Figure 225. CNF slurries
Figure 226. Range of CNF products
Figure 227. Reishi
Figure 228. Compostable water pod
Figure 229. Leather made from leaves
Figure 230. Nike shoe with beLEAF™
Figure 231. CNF clear sheets
Figure 232. Oji Holdings CNF polycarbonate product
Figure 233. Enfinity cellulosic ethanol technology process
Figure 234. Fabric consisting of 70 per cent wool and 30 per cent Qmilk
Figure 235. XCNF
Figure 236: Plantrose process
Figure 237. LOVR hemp leather
Figure 238. CNF insulation flat plates
Figure 239. Hansa lignin
Figure 240. Manufacturing process for STARCEL
Figure 241. Manufacturing process for STARCEL
Figure 242. 3D printed cellulose shoe
Figure 243. Lyocell process
Figure 244. North Face Spiber Moon Parka
Figure 245. PANGAIA LAB NXT GEN Hoodie
Figure 246. Spider silk production
Figure 247. Stora Enso lignin battery materials
Figure 248. 2 wt.% CNF suspension
Figure 249. BiNFi-s Dry Powder
Figure 250. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet
Figure 251. Silk nanofiber (right) and cocoon of raw material
Figure 252. Sulapac cosmetics containers
Figure 253. Sulzer equipment for PLA polymerization processing
Figure 254. Solid Novolac Type lignin modified phenolic resins
Figure 255. Teijin bioplastic film for door handles
Figure 256. Corbion FDCA production process
Figure 257. Comparison of weight reduction effect using CNF
Figure 258. CNF resin products
Figure 259. UPM biorefinery process
Figure 260. Vegea production process
Figure 261. The Proesa® Process
Figure 262. Goldilocks process and applications
Figure 263. Visolis’ Hybrid Bio-Thermocatalytic Process
Figure 264. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test
Figure 265. Worn Again products
Figure 266. Zelfo Technology GmbH CNF production process

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • ADBioplastics
  • AgroRenew
  • Archer Daniels Midland
  • Arkema
  • Avantium
  • BASF
  • BioLogiQ
  • Bluepha
  • Borealis
  • Braskem
  • Cargill
  • Cathay Industrial Biotech
  • Celanese
  • CelluForce
  • Circular Systems
  • CJ Biomaterials
  • CO2BioClean
  • Corn Next
  • Danimer Scientific
  • DuPont
  • Eastman Chemical
  • Ecovative Design
  • Emirates Biotech
  • Eni
  • Evonik
  • FKuR Kunststoff
  • FlexSea
  • Futerro
  • Genomatica
  • Global Bioenergies
  • Helian Polymers BV
  • Hengli Petrochemical
  • Huitong Biomaterials
  • Itaconix
  • Kaneka
  • LG Chem
  • Lenzing
  • Lygos
  • METabolic Explorer
  • MetaFLO Technologies Inc.
  • Mitsubishi Chemical
  • Modern Meadow
  • NatureWorks
  • Newlight Technologies
  • Nordic Bioproducts
  • Novamont
  • Novozymes
  • Nxtlevvel
  • Origin Materials
  • Qore
  • Ourobio
  • PhyCo Technologies
  • Plantic Technologies
  • ReSource Chemical Corp.
  • Roquette
  • RWDC Industries
  • SK Chemicals
  • Solvay
  • Spiber
  • Stora Enso
  • Sulapac
  • Sulzer
  • Teijin
  • TerraVerdae BioWorks
  • TotalEnergies Corbion
  • Toyota Boshoku
  • UPM Biochemicals
  • Verde Bioresins
  • Versalis

Methodology

Loading
LOADING...

This website uses cookies to ensure you get the best experience. Learn more