Discover the latest developments in IEEE 802.11ba and Wake-up Radios
In IEEE 802.11ba: Ultra-Low Power Wake-up Radio Standard, expert engineers Drs. Steve Shellhammer, Alfred Asterjadhi, and Yanjun Sun deliver a detailed discussion of the IEEE 802.11ba standard. The book begins by explaining the concept of a wake-up radio (WUR) and how it fits into the overall 802.11 standard, as well as how a WUR saves power and extends battery life.
The authors go on to describe the medium access control (MAC) layer in detail and then talk about the various protocols used to negotiate WUR operation, its uses for different functionalities (like wake up of the main radio, discovery, synchronization, and security).
The book offers a detailed description of the physical (PHY) layer packet construction and the rationale for the design, as well as the various design aspects of the medium access control layer. It also includes: - A thorough introduction to the motivations driving the development of the WUR in 802.11 - Practical overviews of IEEE 802.11, including the basic concepts of 802.11 (the PHY and MAC) and background material on current low power modes - Comprehensive discussions of the physical layer and PHY layer performance, including the generic receiver, the PPDU, Transmit Diversity, and the FDMA mode - In-depth examinations of the medium access layer and its frame designs
Perfect for professional wireless engineers, IEEE 802.11ba: Ultra-Low Power Wake-up Radio Standard will also earn a place in the libraries of academics and students researching and studying in fields involving wireless communications.
Table of Contents
Author Biography xi
1 Introduction 1
1.1 Background 1
1.2 Overview 3
1.3 Book Outline 5
2 Overview of IEEE 802.11 9
2.1 Introduction 9
2.2 Overview of the IEEE 802.11 PHY Layer 10
2.2.1 Operating Frequencies and Bandwidths 10
2.2.2 Ofdm 11
2.2.3 Ofdm Ppdu 12
2.3 Overview of IEEE 802.11 MAC Layer 16
2.3.1 Network Discovery 16
2.3.2 Connection Setup 18
2.3.3 Coordinated Wireless Medium Access 19
2.3.4 Enhanced Distributed Channel Access 20
2.3.5 Security 20
2.3.6 Time Synchronization 21
2.3.7 Power- Saving Mechanisms 21
2.3.8 Orthogonal Frequency Division Multiple Access (ofdma) 23
2.4 Conclusions 24
References 24
3 Wake- up Radio Concept 25
3.1 Introduction 25
3.2 Primary Sources of Power Consumption in an IEEE 802.11 Station 26
3.2.1 Power Consumption in Transmit Mode 26
3.2.2 Power Consumption in Receive Mode 28
3.2.3 Power Consumption in Sleep Mode 30
3.2.4 Power Consumption in Deep Sleep Mode 30
3.3 Wake- up Radio Concept 31
3.4 Example of Power Consumption Using a Wake- up Radio 37
3.5 Selection of Duty Cycle Values 39
3.6 Conclusions 42
4 Physical Layer Description 43
4.1 Introduction 43
4.2 Requirements 45
4.3 Regulations 47
4.4 Link Budget Considerations 50
4.5 Modulation 53
4.6 Physical Layer Protocol Data Unit (PPDU) Structure 55
4.6.1 Non- WUR Portion of PPDU 55
4.6.2 Sync Field 58
4.6.3 Data Field 61
4.7 Symbol Randomization 62
4.8 FDMA Operation 66
4.8.1 40 MHz FDMA 66
4.8.2 80 MHz FDMA 67
4.9 Additional Topics 67
4.10 Conclusions 68
References 68
5 Physical Layer Performance 73
5.1 Introduction 73
5.2 Generic Non- coherent Receiver 73
5.3 Simulation Description 75
5.3.1 Transmitter Model 76
5.3.2 MC- OOK Symbol Waveform Generation 76
5.3.3 Channel Model 77
5.3.4 Receiver Model 79
5.3.5 Performance Metrics 80
5.4 PHY Performance: Simulation Results 81
5.4.1 Sync Field Detection Rate 82
5.4.2 Sync Field Classification Error Rate 83
5.4.3 Sync Field Timing Error 85
5.4.4 Packet Error Rate 88
5.4.5 Effects of Transmit Diversity 88
5.5 Link Budget Comparison 92
5.5.1 Comparison to the 6 Mb/s OFDM PHY 93
5.5.2 Comparison to the 1 Mb/s Non-OFDM PHY 94
5.6 Conclusions 95
References 95
6 Wake- up Radio Medium Access Control 97
6.1 Introduction 97
6.2 Network Discovery 97
6.2.1 General 97
6.2.2 WUR Discovery 98
6.3 Connectivity and Synchronization 102
6.3.1 General 102
6.3.2 WUR Beacon Frame Generation 102
6.3.3 WUR Beacon Frame Processing 104
6.4 Power Management 105
6.4.1 General 105
6.4.1.1 MR Power Management 105
6.4.1.2 WUR Power Management 106
6.4.2 WUR Modes 108
6.4.2.1 WUR Mode Setup 108
6.4.2.2 WUR Mode Update 110
6.4.2.3 WUR Mode Suspend and Resume 111
6.4.2.4 WUR Mode Teardown 111
6.4.3 Duty Cycle Operation 112
6.4.3.1 WUR Duty Cycle Period 113
6.4.3.2 WUR Duty Cycle Service Period 114
6.4.3.3 WUR Duty Cycle Start Time 114
6.4.4 WUR Wake Up Operation 116
6.4.4.1 Individual DL BU Delivery Context 116
6.4.4.2 Group Addressed DL BU Delivery Context 119
6.4.4.3 Critical BSS Update Delivery Context 121
6.4.5 Use of WUR Short Wake- up Frames 124
6.4.6 Keep Alive Frames 126
6.5 Frequency Division Multiple Access 127
6.6 Protected Wake- up Frames 129
6.7 Conclusion 130
7 Medium Access Control Frame Design 131
7.1 Introduction 131
7.2 Information Elements 131
7.2.1 General 131
7.2.2 Elements Supporting MR Functionalities 132
7.2.2.1 DSSS Parameter Set Element 133
7.2.2.2 EDCA Parameter Set Element 133
7.2.2.3 Channel Switch Announcement Element 135
7.2.2.4 Extended Channel Switch Announcement Element 136
7.2.2.5 HT Operation Element 136
7.2.2.6 VHT Operation Element 137
7.2.2.7 Wide Bandwidth Channel Switch Element 138
7.2.2.8 Channel Switch Wrapper Element 139
7.2.2.9 HE Operation Element 139
7.2.3 Elements Supporting WUR Functionalities 142
7.2.3.1 WUR Capabilities Element 142
7.2.3.2 WUR Operation Element 142
7.2.3.3 WUR Mode Element 145
7.2.3.4 WUR Discovery Element 154
7.2.3.5 WUR PN Update Element 155
7.3 Main Radio MAC Frames 155
7.3.1 Beacon Frame 155
7.3.2 Probe Request/Response Frames 156
7.3.3 (Re)Association Request/Response Frames 156
7.3.4 Action Frames 157
7.4 WUR MAC Frames 157
7.4.1 WUR Beacon Frame 161
7.4.2 WUR Wake- up Frame 161
7.4.3 WUR Discovery Frame 164
7.4.4 WUR Vendor-Specific Frame 165
7.4.5 WUR Short Wake- up Frame 166
7.5 Conclusion 167
Index 169