+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Plastics Waste Management. Processing and Disposal. Edition No. 2

  • Book

  • 270 Pages
  • September 2019
  • John Wiley and Sons Ltd
  • ID: 5841018
The book provides clear explanations for newcomers to the subject as well as contemporary details and theory for the experienced user in plastics waste management.

It is seldom that a day goes by without another story or photo regarding the problem of plastics waste in the oceans or landfills. While important efforts are being made to clear up the waste, this book looks at the underlying causes and focuses on plastics waste management. Plastics manufacturers have been slow to recognize their environmental impact compared with more directly polluting industries. However, the environmental pressures concerning plastics have forced the industry to examine their own recycling operations and implement plastics waste management.

Plastics Waste Management realizes two ideals: That all plastics should be able to persist for as long as plastics are required, and that all plastics are recycled in a uniform manner regardless of the length of time for which it persists. The book examines plastics waste management and systems for the environment, as well the management approaches and techniques which are appropriate for managing the environment. It serves as an excellent and thoughtful plastics waste management handbook.

This groundbreaking book:

- Identifies deficiencies in plastics waste management - Extrapolates from experiences to draw some conclusions about plastics waste for persistence - Describes methods how the waste related processing techniques should be used in recycling - Shows how the consumer and industry can assess the performance of plastics waste management - Explains waste utilization by recycling techniques as well as waste reduction - Life cycle assessment as an important technique for recycling of persistent plastics waste.

Table of Contents

Preface xiii

1 Introduction 1 

References 4

2 Plastics and Additives 7

2.1 Polymers 7

2.2 Plastics 8

2.3 Plastics Raw Material 9

2.4 Thermoplastics 9

2.4.1 Polyolefin 10

2.4.1.1 Polyethylene 11

2.4.1.2 Polypropylene 12

2.4.1.3 Polystyrene 14

2.4.1.4 Polyvinyl Chloride 14

2.4.2 Polyester 16

2.4.3 Polycarbonate 17

2.4.4 Polyamide 18

2.4.5 Biodegradable Plastics 18

2.5 Thermosets 19

2.5.1 Phenol-formaldehyde 20

2.5.2 Unsaturated Polyester 20

2.6 Additives 20

2.6.1 Antioxidants 22

2.6.2 Slip Additives 22

2.6.3 Ultraviolet Stabilizers 23

2.6.4 Heat Stabilizers 23

2.6.5 Plasticizers 24

2.6.6 Lubricants 25

2.6.7 Flame Retardants 25

2.6.8 Mold Release Agents 26

2.6.9 Nucleating Agents 28

2.6.10 Fillers 29

2.7 Plastics - Applications 29

2.8 Remarks 30

References 30

3 Plastics and Environment 37

3.1 Plastics and Conventional Materials - Comparison 37

3.2 Effects of Plastics Products and Environment 39

3.3 Landsite Effects 39

3.4 Chemical Environment 39

3.5 Marine Environment 40

3.6 Packaging Materials 42

3.7 Agricultural Fields 42

3.8 Waste Accumulation 43

3.9 Degradation of Plastics 43

3.9.1 Process Degradation 43

3.9.2 Environmental Degradation 45

3.10 Environmental Burdens 46

3.11 Industrial Ecosystem 47

3.12 Remarks 47

References 47

4 Plastics Processing Technology 53

4.1 Background 53

4.2 Management - Plastics Processing 54

4.3 Plastic Materials - Variations 55

4.4 Technology 56

4.4.1 Injection Molding 58

4.4.2 Blow Molding 60

4.4.3 Extrusion 62

4.4.4 Thermoforming 63

4.4.5 Rotational Molding 64

4.4.6 Compression Molding 66

4.5 Productivity and Task 67

4.6 Waste Processing 68

4.7 Reprocess Material in Plastics Processing 69

4.8 Challenges and Opportunities 70

4.9 Remarks 71

References 71

5 Plastics Waste - Consumer and Industry 73

5.1 Background 74

5.2 Plastics Waste 74

5.3 Polyolefin 75

5.4 Polypropylene 76

5.5 Polystyrene 76

5.6 Polyvinylchloride 76

5.7 Bioplastics 77

5.8 Additives and Environment 78

5.8.1 Heat Stabilizers 78

5.8.2 Plasticizers 78

5.8.3 Flame Retardants 79

5.8.4 Compatibilizers 79

5.9 Technological Aspects 80

5.10 Factors Influencing Plastics Waste 80

5.11 Waste Resources 81

5.11.1 Domestic Waste 81

5.11.2 Packaging Waste 82

5.11.3 E-Waste 83

5.11.4 Automotive Waste 84

5.11.5 Medical Plastics Waste 84

5.11.6 Agriculture Plastics Waste 85

5.11.7 Marine Plastics Waste 85

5.11.8 Mixed or Contaminated Plastics 86

5.12 Plastics Waste Reduction 86

5.13 Advantages of Waste Prevention 88

5.14 Waste Reduction and Performance 89

5.15 Recovery of Plastics 89

5.16 Remarks 90

References 91

6 Plastics Waste Management 97

6.1 Principles 97

6.2 Objective 98

6.3 Requirements 98

6.4 Management Concept 99

6.5 Waste Collection 99

6.6 Separation and Cleaning 100

6.7 Scientific Thinking 101

6.8 Outcome 101

6.9 Effective Management 101

6.10 Dynamic Thinking 102

6.11 Multi-Phase Approach 103

6.12 Significance 103

6.13 Progressive Management Characteristics 104

6.14 Risks in Plastics Waste Management 105

6.15 Factors - Affect, Suffer, and Influence 105

6.16 Operational Problems 106

6.17 Sustainability and Symbolic Management 106

6.18 Environmental Conservation 107

6.19 Decision-Making Process 107

6.20 Integrated Plastics Waste Management 108

6.21 Assignments 109

6.22 Advantages 110

6.23 Shortcomings 111

References 112

7 Recycling Technology 115

7.1 Man-Made Material - Plastics 116

7.2 Substantial Prerequisite 117

7.3 Philosophy 117

7.4 Purpose of Recycling Technology 118

7.5 Fortune of Plastics Material 119

7.6 Methods of Recycling 119

7.7 Plastics Waste - Stream 121

7.8 Mixed Plastics Waste - Separation 123

7.9 Origination of Plastics Waste 124

7.10 Problems of Recycling and Controls 125

7.10.1 Problems 125

7.10.2 Controls 126

7.11 Physical Characterization and Identification 126

7.12 Recycling - A Resource 127

7.13 Recycling Technology 128

7.14 Primary Recycling 129

7.14.1 Reprocessing Essentials 130

7.15 Mechanical Recycling 130

7.15.1 Limitations 132

7.15.2 Processing Problems 132

7.16 Chemical Recycling 133

7.17 Energy Recovery 136

7.18 Pyrolysis 136

7.19 Types of Reactors and Process Design 140

7.19.1 Batch and Semi-Batch Reactor 140

7.19.2 Fluidized Bed Reactor 141

7.19.3 Conical Spouted Bed Reactor 142

7.19.4 Two-Stage Pyrolysis System 142

7.19.5 Microwave-Assisted Pyrolysis (MAP) 143

7.19.6 Pyrolysis in Supercritical Water (SCW) 144

7.19.7 Fluid Catalytic Cracking 144

7.20 Thermal Co-Processing 145

7.20.1 Advantages 146

7.21 Gasification 146

7.22 Plastics Waste and Recycling 147

7.22.1 Polyolefin 147

7.22.2 Polyvinyl Chloride 148

7.22.3 Polyethylene Terephthalate 148

7.23 Environmental Burdens 150

7.23.1 Incineration - Open Air 150

7.23.2 Plastics Waste in Concrete 151

7.23.3 Plastics Waste in Tar for Road Laying 151

7.24 Plastics Waste as Blends and Composites 152

7.25 Remarks 153

References 153

8 Economy and Recycle Market 163

8.1 Economical Background 163

8.2 Growth Trajectory 164

8.3 Value of Plastics Waste 164

8.4 Economic Issues 165

8.5 Market Dynamics and Uncertainty 166

8.6 Fiscal Waste 167

8.7 Waste to Value 168

8.8 Industrial Ecology 169

8.9 Industrial Symbioses (ISs) 170

8.10 Economic Advantages 171

8.11 Economic Implications 171

8.12 Marketing Strategy 172

8.13 Modern Marketing Philosophy 173

8.14 Recycled Plastics Market 173

8.15 Industrial Marketing 175

8.16 Product Development and Marketing 176

8.17 Recycled Plastic Products and Consumer Market 177

8.18 Remarks 178

References 179

9 Life Cycle Assessment 183

9.1 LCA and Plastics Waste 183

Background 184

9.2 Life Cycle Assessment - A Tool to Assess Waste 185

9.3 Scientific Engineering 187

9.4 Purpose 187

9.5 Harmonization of LCA Method 188

9.6 Methodology 188

9.7 LCA Initiation 189

9.8 LCA in Plastics Waste 190

9.9 Advantages of LCA 191

9.10 Shortcomings of LCA 191

9.11 Environment Waste Auditing 192

9.12 Waste Prevention 193

9.13 Remarks 194

References 194

10 Case Studies 199

10.1 Waste Dump and Health Hazards 199

10.2 Utilization of Plastics Waste 200

10.2.1 Europe 201

10.2.2 India 201

10.2.3 Japan 202

10.2.4 France 203

10.2.5 Other Countries 204

10.3 Use of Case Studies 205

10.4 Property Value 206

10.5 Case Study 1: Plastics Waste from the Electric and Electronic Field 206

10.5.1 Concept 206

10.5.2 Objective 207

10.5.3 Methodology 207

10.5.4 Experimental Method 208

10.5.5 Results 210

10.5.6 Conclusion 210

10.6 Case Study 2: Plastics Waste from the Automobile Industry 210

10.6.1 Background 210

10.6.2 Design 211

10.6.3 Disposal and Recovery 211

10.6.3.1 Recycling of Bumpers 211

10.6.4 Inference 211

10.7 Pros and Cons 213

10.7.1 Positive Thinking 213

10.7.2 Negative Effects 213

10.8 Research and Case Study 214

10.9 Remarks 214

References 215

11 Present Trends 219

11.1 Economic Issues 219

11.2 Industry and Society 220

11.3 Landfilling 220

11.4 Effect of Single-Use Plastic Products 221

11.5 Effect on Food Packaging 221

11.6 Recycling Status 222

11.7 Present Research and Shortcomings 222

11.8 Population Growth and Waste 223

11.9 Remarks 224

References 224

12 Future Trends 227

12.1 Present Problems 227

12.2 Incineration in Open Air 228

12.3 Environmental Advantages 229

12.4 Plastics Waste - Challenge 229

12.5 Environmental and Social Problems - Prevention 230

12.6 Reasons - Waste Accumulation 231

12.7 Ecological Issues 232

12.8 Facts about Bioplastics 232

12.9 Future Requirements 233

12.10 Remarks 234

References 235

Index 237

Authors

Muralisrinivasan Natamai Subramanian Canterbury, UK.