Covers a wide range of advanced materials and technologies for CO2 capture
As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties.
Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes.
- A comprehensive overview and survey of the present status of materials and technologies for carbon capture
- Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture
- Allows the reader to better understand the challenges and opportunities in carbon capture
- Edited by leading experts working on materials and membranes for carbon separation and capture
Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.
Table of Contents
List of Contributors xi
Preface xv
Acknowledgments xvii
1 Introduction 1
De-en Jiang, Shannon M. Mahurin and Sheng Dai
References 3
2 CO2 Capture and Separation of Metal-Organic Frameworks 5
Xueying Ge and Shengqian Ma
2.1 Introduction 5
2.1.1 CO2 Capture Process 7
2.1.2 Introduction to MOFs for CO2 Capture and Separation 7
2.2 Evaluation Theory 8
2.2.1 Isosteric Heat of Adsorption (Qst) 8
2.2.1.1 The Virial Method 1 9
2.2.1.2 The Virial Method 2 9
2.2.1.3 The Langmuir-Freundlich Equation 9
2.2.2 Ideal Adsorbed Solution Theory (IAST) 10
2.3 CO2 Capture Ability in MOFs 10
2.3.1 Open Metal Site 10
2.3.2 Pore Size 11
2.3.3 Polar Functional Group 13
2.3.4 Incorporation 14
2.4 MOFs in CO2 Capture in Practice 14
2.4.1 Single-Component CO2 Capture Capacity 14
2.4.2 Binary CO2 Capture Capacity and Selectivity 16
2.4.3 Other Related Gas-Selective Adsorption 19
2.5 Membrane for CO2 Capture 19
2.5.1 Pure MOF Membrane for CO2 Capture 20
2.5.2 MOF-Based Mixed Matrix Membranes for CO2 Capture 20
2.6 Conclusion and Perspectives 21
Acknowledgments 21
References 21
3 Porous Carbon Materials 29
Xiang-Qian Zhang and An-Hui Lu
3.1 Introduction 29
3.2 Designed Synthesis of Polymer-Based Porous Carbons as CO2 Adsorbents 30
3.2.1 Hard-Template Method 31
3.2.1.1 Porous Carbons Replicated from Porous Silica 31
3.2.1.2 Porous Carbons Replicated from Crystalline Microporous Materials 33
3.2.1.3 Porous Carbons Replicated from Colloidal Crystals 35
3.2.1.4 Porous Carbons Replicated from MgO Nanoparticles 36
3.2.2 Soft-Template Method 38
3.2.2.1 Carbon Monolith 38
3.2.2.2 Carbon Films and Sheets 45
3.2.2.3 Carbon Spheres 48
3.2.3 Template-Free Synthesis 49
3.3 Porous Carbons Derived from Ionic Liquids for CO2 Capture 53
3.4 Porous Carbons Derived from Porous Organic Frameworks for CO2 Capture 56
3.5 Porous Carbons Derived from Sustainable Resources for CO2 Capture 61
3.5.1 Direct Pyrolysis and/or Activation 63
3.5.2 Sol-Gel Process and Hydrothermal Carbonization Method 64
3.6 Critical Design Principles of Porous Carbons for CO2 Capture 67
3.6.1 Pore Structures 67
3.6.2 Surface Chemistry 72
3.6.2.1 Nitrogen-Containing Precursors 72
3.6.2.2 High-Temperature Reaction and Transformation 76
3.6.2.3 Oxygen-Containing or Sulfur-Containing Functional Groups 77
3.6.3 Crystalline Degree of the Porous Carbon Framework 81
3.6.4 Functional Integration and Reinforcement of Porous Carbon 83
3.7 Summary and Perspective 88
References 89
4 Porous Aromatic Frameworks for Carbon Dioxide Capture 97
Teng Ben and Shilun Qiu
4.1 Introduction 97
4.2 Carbon Dioxide Capture of Porous Aromatic Frameworks 98
4.3 Strategies for Improving CO2 Uptake in Porous Aromatic Frameworks 98
4.3.1 Improving the Surface Area 98
4.3.2 Heteroatom Doping 99
4.3.3 Tailoring the Pore Size 102
4.3.4 Post Modification 103
4.4 Conclusion and Perspectives 114
References 114
5 Virtual Screening of Materials for Carbon Capture 117
Aman Jain, Ravichandar Babarao and Aaron W. Thornton
5.1 Introduction 118
5.2 Computational Methods 118
5.2.1 Monte Carlo-Based Simulations 118
5.2.2 MD Simulation 122
5.2.3 Density Functional Theory 122
5.2.4 Empirical, Phenomenological, and Fundamental Models 123
5.2.4.1 Langmuir and Others 124
5.2.4.2 Ideal Adsorbed Solution Theory (IAST) 124
5.2.5 Materials Genome Initiative 126
5.2.6 High-Throughput Screening 127
5.3 Adsorbent-Based CO2 Capture 129
5.3.1 Direct Air Capture 130
5.4 Membrane-Based CO2 Capture 131
5.5 Candidate Materials 131
5.5.1 Metal Organic Frameworks 131
5.5.2 Zeolites 132
5.5.3 Zeolitic Imidiazolate Frameworks 133
5.5.4 Mesoporous Carbons 133
5.5.5 Glassy and Rubbery Polymers 133
5.6 Porous Aromatic Frameworks 134
5.7 Covalent Organic Frameworks 135
5.8 Criteria for Screening Candidate Materials 135
5.8.1 CO2 Uptake 135
5.8.2 Working Capacity 136
5.8.3 Selectivity 137
5.8.4 Diffusivity 137
5.8.5 Regenerability 138
5.8.6 Breakthrough Time in PSA 138
5.8.7 Heat of Adsorption 138
5.9 In-Silico Insights 138
5.9.1 Effect of Water Vapor 138
5.9.2 Effect of Metal Exchange 141
5.9.3 Effect of Ionic Exchange 142
5.9.4 Effect of Framework Charges 142
5.9.5 Effect of High-Density Open Metal Sites 144
5.9.6 Effect of Slipping 145
References 145
6 Ultrathin Membranes for Gas Separation 153
Ziqi Tian, Song Wang, Sheng Dai and De-en Jiang
6.1 Introduction 153
6.2 Porous Graphene 155
6.2.1 Proof of Concept 155
6.2.2 Experimental Confirmation 156
6.2.3 More Realistic Simulations to Obtain Permeance 158
6.2.4 Further Simulations of Porous Graphene 160
6.2.5 Effect of Pore Density on Gas Permeation 161
6.3 Graphene-Derived 2D Membranes 163
6.3.1 Poly-phenylene Membrane 163
6.3.2 Graphyne and Graphdiyne Membranes 165
6.3.3 Graphene Oxide Membranes 166
6.3.4 2D Porous Organic Polymers 166
6.4 Porous Carbon Nanotube 168
6.5 Porous Porphyrins 172
6.6 Flexible Control of Pore Size 174
6.6.1 Ion-Gated Porous Graphene Membrane 174
6.6.2 Bilayer Porous Graphene with Continuously Tunable Pore Size 176
6.7 Summary and Outlook 178
Acknowledgments 179
References 179
7 Polymeric Membranes 187
Jason E. Bara and W. Jeffrey Horne
7.1 Introduction 187
7.1.1 Overview of Post-Combustion CO2 Capture 187
7.1.2 Polymer Membrane Fundamentals and Process Considerations 189
7.2 Polymer Types 193
7.2.1 Poly(Ethylene Glycol) 193
7.2.2 Polyimides and Thermally Rearranged Polymers 195
7.2.3 Polymers of Intrinsic Microporosity (PIMs) 196
7.2.4 Poly(Ionic Liquids) 197
7.2.5 Other Polymer Materials 198
7.3 Facilitated Transport 199
7.4 Polymer Membrane Contactors 202
7.5 Summary and Perspectives 203
References 204
8 Carbon Membranes for CO2 Separation 215
Kuan Huang and Sheng Dai
8.1 Introduction 215
8.2 Theory 216
8.3 Graphene Membranes 217
8.4 Carbon Nanotube Membranes 221
8.5 Carbon Molecular Sieve Membranes 222
8.6 Conclusions and Outlook 230
Acknowledgments 230
References 231
9 Composite Materials for Carbon Capture 237
Sunee Wongchitphimon, Siew Siang Lee, Chong Yang Chuah, Rong Wang and Tae-Hyun Bae
9.1 Introduction 237
9.1.1 Technologies for CO2 Capture 238
9.1.2 Composite Materials for Adsorptive CO2 Capture 239
9.1.3 Composite Materials for Membrane-Based CO2 Capture 240
9.2 Fillers for Composite Materials 242
9.2.1 Zeolites 242
9.2.2 Metal-Organic Frameworks 243
9.2.3 Other Particulate Materials - Carbon Molecular Sieves and Mesoporous Silica 247
9.2.4 1-D Materials - Carbon Nanotubes 247
9.2.5 2-D Materials - Layered Silicate and Graphene 248
9.3 Non-Ideality of Filler/Polymer Interfaces 250
9.3.1 Sieve-in-a-Cage 251
9.3.2 Polymer Matrix Rigidification 253
9.3.3 Plugged Filler Pores 253
9.4 Composite Adsorbents 253
9.5 Composite Membranes (Mixed-Matrix Membranes) 255
9.6 Conclusion and Outlook 256
References 260
10 Poly(Amidoamine) Dendrimers for Carbon Capture 267
Ikuo Taniguchi
10.1 Introduction 267
10.2 Poly(Amidoamine) in CO2 Capture 269
10.2.1 A Brief History 269
10.2.2 Immobilization of PAMAM Dendrimers 270
10.2.2.1 Immobilization in Crosslinked Chitosan 270
10.2.2.2 Immobilization in Crosslinked Poly(Vinyl Alcohol) 273
10.2.2.3 Immobilization in Crosslinked PEG 275
10.3 Factors to Determine CO2 Separation Properties 276
10.3.1 Visualization of Phase-Separated Structure 276
10.3.2 Effect of Humidity 280
10.3.3 Effect of Phase-Separated Structure 281
10.4 CO2-Selective Molecular Gate 284
10.5 Enhancement of CO2 Separation Performance 286
10.6 Conclusion and Perspectives 288
Acknowledgments 291
References 291
11 Ionic Liquids for Chemisorption of CO2 297
Mingguang Pan and Congmin Wang
11.1 Introduction 297
11.2 PILs for Chemisorption of CO2 299
11.3 Aprotic Ionic Liquids for Chemisorption of CO2 300
11.3.1 N as the Absorption Site 300
11.3.1.1 Amino-Containing Ionic Liquids 300
11.3.1.2 Azolide Ionic Liquids 302
11.3.2 O as the Absorption Site 303
11.3.3 Both N, O as Absorption Sites 303
11.3.4 C as the Absorption Site 306
11.4 Metal Chelate ILs for Chemisorption of CO2 307
11.5 IL-Based Mixtures for Chemisorption of CO2 307
11.6 Supported ILs for Chemisorption of CO2 308
11.7 Conclusion and Perspectives 309
Acknowledgments 309
References 310
12 Ionic Liquid-Based Membranes 317
Chi-Linh Do-Thanh, Jennifer Schott, Sheng Dai and Shannon M. Mahurin
12.1 Introduction 317
12.1.1 Transport in Ionic Liquids 320
12.1.2 Facilitated Transport 321
12.2 Supported IL Membranes 323
12.2.1 Microporous Supports and Nanoconfinement 327
12.2.2 Hollow-Fiber Supports 328
12.3 Polymerizable ILs 330
12.4 Mixed-Matrix ILs 332
12.5 Conclusion and Outlook 336
References 336
Index 347