+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Energy Storage Materials Characterization, Volumes 1 - 2. Determining Properties and Performance. Edition No. 1

  • Book

  • 816 Pages
  • February 2025
  • John Wiley and Sons Ltd
  • ID: 5914256
Comprehensive summary of the properties and performance of experimental analytical techniques for a wide range of electrochemical energy storage materials

Energy Storage Materials Characterization summarizes the basic methods used to determine the properties and performance of energy storage materials and details a wide range of techniques used in electrochemical testing, including X-ray, neutron, optical, microwave, electron, and scanning probe techniques. Representative examples of each technique are presented to illustrate their powerful capabilities and offer a general strategy for future development of the original techniques.

Preceding the main text, a helpful introduction covers topics including the overall energy consumption structure of the modern world, various existing forms of energy and electrochemical energy storage, known problems with energy storage materials such as lithium-ion batteries, and specifics of electrochemical impedance spectroscopy (EIS).

Written by two highly qualified academics with significant research experience in the field, Energy Storage Materials Characterization includes information such as: - Photoemission spectroscopy, X-ray pair distribution function to investigate battery systems, and cryo-electron microscopy- X-ray diffraction, absorption spectroscopy, fluorescence and tomography microscopy, and neutron scattering, depth profile, and imaging- UV-Vis spectroscopy for energy storage and related materials, Raman spectroscopy, Fourier transform infrared spectroscopy, and optical microscopy- Structural and chemical characterization of alkali-ion battery materials using electron energy-loss spectroscopy coupled with transmission electron microscopy

Energy Storage Materials Characterization is an essential up-to-date reference on the subject for chemists and materials scientists involved in research related to improving electrochemical energy storage systems for superior battery performance.

Table of Contents

Volume I

Preface xiii

1 Introduction 1
Bifa Ji, Xin Lei, Rui Yang, and Yongbing Tang

1.1 Energy 1

1.1.1 Energy Utilization and Development Tendency 2

1.1.2 Forms of Energy Storage and Electrochemical Energy Storage 4

1.1.3 The Target and Key Problem of Energy Storage Materials 5

1.1.4 The Analysis Method Summary 8

1.2 Electrochemical Techniques in Battery Research 11

1.2.1 Charge/Discharge Measurement 11

1.2.2 Cyclic Voltammetry 15

1.2.3 Electrochemical Impedance Spectroscopy (EIS) 18

1.2.4 Electrochemical Measurements of Diffusion Coefficient 21

References 23

Part I X-ray Techniques 27

2 X-ray Diffraction 29
Xuewu Ou

2.1 Introduction of X-ray Diffraction 29

2.1.1 Qualitative Analysis 30

2.1.2 Quantitative Analysis 30

2.1.3 Crystallinity Analysis 31

2.1.4 Residual Stress Determination 31

2.1.5 Determination of Grain Size 31

2.1.6 Lattice Parameter Determination 32

2.2 Working Principle and Configuration of X-ray Diffraction 32

2.2.1 Working Principle of X-ray Diffraction 32

2.2.2 The Basic Configuration of X-ray Diffraction 34

2.2.2.1 X-ray Generator 34

2.2.2.2 Goniometer 35

2.2.2.3 Recorder 35

2.2.3 Different Types of XRD Testing Techniques 35

2.2.3.1 Single Crystal Diffraction and Polycrystalline Diffraction 35

2.2.3.2 Conventional X-ray Diffraction and Small-Angle Diffraction 36

2.3 Applications of X-ray Diffraction in Electrochemical Energy Storage 36

2.3.1 Applications of Traditional XRD in Electrochemical Energy Storage 36

2.3.1.1 Crystal Structure Characterization of Electrode Materials 37

2.3.1.2 Study on Electrochemical Reaction Mechanism 39

2.3.1.3 Developing New Electrode Materials 40

2.3.2 In Situ XRD and Its Application in Electrochemical Energy Storage 42

2.3.2.1 Principle and Basic Configuration of In Situ XRD 42

2.3.2.2 Applications of In Situ XRD in Energy Storage Materials 43

2.4 Summary and Prospects 44

References 45

3 X-ray Absorption Spectroscopy 49
Pinit Kidkhunthod, Jintara Padchasri, Sumeth Siriroj, Amorntep Montreeuppathum, Yingyot Poo-arporn, and Sarayut Tunmee

3.1 Theory of XAS 49

3.1.1 X-ray Absorption Near Edge Structure (XANES) 50

3.1.1.1 Pre-edge Region 51

3.1.1.2 Absorption Edge 51

3.1.1.3 XANES Spectra 51

3.1.2 Extended X-ray Absorption Fine Structure (EXAFS) 51

3.1.3 Summary of XAS: Pros and Cons 54

3.2 XAS Beamlines 54

3.3 Ex Situ and In Situ (Operando) Studies on the Investigation of a Battery at Work 58

3.4 Case Studies in Battery Materials 60

3.4.1 Ex Situ Studies of the Effect of Ni Content in Lithium Nickel Borate Glasses Electrode 60

3.4.2 In situ studies of Dynamic Phase Transition in Olivine Cathode for Li-Ion Batteries 62

References 64

4 Photoemission Spectroscopy for Energy Storage Materials 67
Hideki Nakajima

4.1 Introduction 67

4.2 Basic Principles 69

4.2.1 Background 69

4.2.2 XPS Overview 71

4.3 Applications to Energy Storage Materials 75

4.3.1 Laboratory-based (Conventional) XPS 75

4.3.2 Laboratory-based HAX PES 78

4.3.3 SR-based PES Including HAX PES and Related Techniques 80

4.3.4 NAP PES in the SOX range 83

4.3.5 NAP PES in the HAX Range 87

4.4 Summary and Prospect 89

References 90

5 Application of X-ray Pair Distribution Function to Batteries 99
Chong Chen

5.1 Introduction 99

5.2 Principles and Methods 100

5.2.1 Total Scattering Conversion 102

5.2.2 Computational Analysis 105

5.2.2.1 Real-Space Rietveld Method 105

5.2.2.2 Reverse Monte Carlo (RMC) Simulation 106

5.2.2.3 DFT/Molecular Dynamics Coupling 108

5.2.3 Power of PDF Methods 109

5.2.3.1 Defects and Local Disorders 109

5.2.3.2 Nanomaterials 110

5.2.3.3 Amorphous or Glassy Solids 113

5.3 Applications in Electrochemical Energy Storage 115

5.3.1 Static Local Structure in Electrode Materials 116

5.3.2 Dynamically Evolved Local Structure under Battery Operation 117

5.3.3 In Situ PDF Measurement for Operating Battery 119

5.4 Concluding Remarks 120

Acknowledgments 121

References 121

6 X-ray Fluorescence Microscopy 127
Xuewu Ou

6.1 The Introduction of X-ray Fluorescence 127

6.2 The Working Principle and Equipment Configuration of X-ray Fluorescence 128

6.2.1 The Working Principle of X-ray Fluorescence 128

6.2.2 Basic Configuration of X-ray Fluorescence 130

6.2.3 Handheld XRF Spectrometer 130

6.2.4 The Development Trends of XRF Spectrometer 131

6.3 Applications of X-ray Fluorescence Spectrometer in Energy Storage Materials 132

6.3.1 Application of Conventional X-ray Fluorescence Spectrometer in Energy Storage Materials 132

6.3.2 Application of In Situ Synchrotron Radiation XRF in Energy Storage Materials 135

6.4 Summary and Prospect 138

References 139

7 X-ray Tomography 141
Qirong Liu, Yunjie Lin, and Xinyu Yang

7.1 Introduction 141

7.2 General Fundamentals of XRT 142

7.2.1 Attenuation Contrast-based XRT 142

7.2.2 Phase Contrast-based XRT 144

7.3 Applications of XRT in the Field of Electrochemical Energy Storage 145

7.3.1 Structural and Compositional Evolution 146

7.3.2 Electrochemical Dynamics 149

7.3.3 Device Degradation 150

7.4 Concluding Remarks 152

References 153

8 Transmission X-ray Microscopy 155
Xiao Zheng

8.1 Introduction 155

8.2 Basic Principles of Transmission X-ray Microscopy 156

8.3 Morphology and Chemical Mapping of Energy Storage Materials by Txm 158

8.3.1 TXM of the Galvanostatic Growth of PbSO 4 on Pb 158

8.3.2 TXM of the Cu 6 Sn 5 Anode 159

8.3.3 TXM of the Co 3 O 4 /Graphene Composite and Sodium Titanate 161

8.3.4 TXM of Sulfur Composite Cathode 162

8.3.5 TXM of Discharge Products of Li-O 2 Batteries 163

8.3.6 TXM of Discharge Products of Na-O 2 Batteries 166

8.4 Applications of In-situ TXM in Energy Storage Materials 168

8.4.1 In-situ TXM of Lithium Anodes 168

8.4.2 In-situ TXM of Ge and Ge 0.9 Se 0.1 Anodes 170

8.4.3 In-situ TXM of Sn and Sn-Containing Compound Anodes 174

8.4.4 In-situ TXM of Zn Anode 180

8.4.5 In-situ TXM of Li 2 MnO 3 ⋅LiMO 2 cathode 181

8.4.6 In-situ TXM of Sulfur Cathodes 182

8.5 Summary and Prospect 185

References 186

9 Coherent X-ray Diffractive Imaging 195
Qirong Liu and Yuhan Liu

9.1 Introduction 195

9.2 General Fundamentals of CXDI Techniques 196

9.2.1 Working Principle 196

9.2.2 Phase Problem 197

9.2.3 Phase Retrieval Algorithms 199

9.2.4 CXDI Methods 200

9.3 The Application of CXDI Techniques in Electrochemical Field 203

9.3.1 Phase Transformation 203

9.3.2 Structure and Strain Evolution 205

9.3.3 Degradation Mechanism 207

9.4 Concluding Remarks 209

References 209

Part II Neutron Techniques 213

10 Neutron Techniques 215
XuXu Wang, Luan Fang, Zhuomei Wu, Ruxiu He, Jinhui Li, Shuang Liu, and Ping Nie

10.1 Introduction 215

10.2 Basic Principles 217

10.3 Application on Energy Storage Materials 219

10.3.1 Lithium-ion Batteries 221

10.3.1.1 Neutron Powder Diffraction 223

10.3.1.2 Small and Ultra-small Angle Neutron Scattering 228

10.3.1.3 Neutron Reflection 230

10.3.1.4 Neutron Imaging 230

10.3.1.5 Neutron Depth Profile 231

10.3.2 Sodium-ion Batteries 233

10.3.2.1 Cathode Materials 233

10.3.2.2 Neutron Diffraction 233

10.3.2.3 In situ Neutron Diffraction 238

10.3.2.4 Neutron Scattering 240

10.3.2.5 Anode Materials 240

10.3.2.6 In situ Small-angle Neutron Scattering 242

10.3.2.7 Solid State and Liquid Electrolytes 242

10.3.2.8 In Situ Neutron Diffraction 243

10.3.3 Potassium-ion Batteries 244

10.3.3.1 Cathode Materials 245

10.3.3.2 Anode Materials 245

10.3.3.3 Electrolytes 247

10.3.4 Other Battery Systems 248

10.3.4.1 Magnesium-ion Batteries 248

10.3.4.2 Zinc-ion Batteries 250

10.3.4.3 Calcium-ion Batteries 251

10.3.4.4 Aluminum-ion Batteries 251

10.4 Summary and Prospect 251

Author Contributions 253

References 253

11 Neutron Diffraction for Energy Storage Materials 263
Sichen Jiao, Xuelong Wang, and Xiqian Yu

11.1 General Background and Introduction 263

11.2 Overview of Neutron as a Probe of Structural Characterization 265

11.2.1 Neutron’s Strength in Structural Characterization 265

11.2.2 Review of Basic Concepts in Neutron Scattering 266

11.2.3 Theoretical Background for Neutron Diffraction and Total Scattering 267

11.3 Ex situ Neutron Structural Characterization 270

11.3.1 Average Structure 270

11.3.1.1 Crystalline Structure 271

11.3.1.2 Magnetic Structure 275

11.3.1.3 Diffusion Pathway 278

11.3.2 Local Structure 281

11.4 In situ Structure Detection by Neutron 286

11.5 Summary and Outlook 292

References 293

12 Neutron Scattering 299
Qingguang Pan

12.1 Introduction 299

12.2 Basic Principles 301

12.2.1 Neutron Production 301

12.2.2 Neutron Radiation 302

12.2.3 Neutron Scattering 304

12.2.4 Neutron Pair Distribution Function 307

12.3 Traditional Application on Energy Storage Materials 308

12.3.1 Interaction of Neutrons with Energy Storage Materials 308

12.3.2 Neutron Structural Studies of Batteries 309

12.3.3 In situ/Operando SANS 313

12.3.4 NPDF Application 317

12.4 Summary and Prospect 319

References 319

13 Neutron Depth Profile 325
Luojiang Zhang and Hao Cheng

13.1 Introduction 325

13.2 Application of NDP in Lithium-based Rechargeable Batteries 329

13.2.1 Application in Organic Electrolyte Lithium-based Rechargeable Batteries 329

13.2.2 Application in Solid-State Electrolyte Lithium-Based Rechargeable Batteries 336

13.2.3 Application in Gel Polymer Electrolyte Lithium-Based Rechargeable Batteries 342

13.3 Conclusions and Perspective 342

References 344

14 Neutron Imaging 349
Rui Jia and Fan Zhang

14.1 Introduction 349

14.2 Basic Principles and NI System 350

14.2.1 Basic Principles 350

14.2.2 NI System 351

14.3 Applications of NI in Energy Storage Materials and Devices 352

14.3.1 Ex-situ Applications on Energy Storage Materials and Devices 353

14.3.2 In-situ Applications on Energy Storage Materials and Devices 355

14.4 Summary and Prospects 361

References 363

Volume II

Preface xiii

Part III Optical Techniques 371

15 UV-Vis Spectroscopy for Energy Storage and Related Materials 373
Jiratchaya Ayawanna, Salisa Chaiyaput, Pinit Kidkhunthod, Phongsapak Sittimart, Anthika Lakhonchai, and Sarayut Tunmee

15.1 Introduction 373

15.2 Basic Principles 374

15.2.1 Strengths UV-Vis Spectroscopy 379

15.2.2 Limitations of UV-Vis Spectroscopy 379

15.2.3 Overview of Typical UV-Vis Applications 380

15.3 Traditional Application of UV-Vis Spectroscopy on Energy Storage Materials 381

15.3.1 In situ Raman and UV-Vis Spectroscopic Analysis of Lithium-ion Batteries 381

15.3.2 Energy Storage in Bifunctional TiO 2 Composite Materials under UV and Visible Light 383

15.3.3 Application of In Operando UV-Vis Spectroscopy in Lithium-Sulfur Batteries 384

15.3.4 Investigation on Thermal Properties of Al 2 O 3 -based Phase Change Material Composite for Solar Thermal System Application 385

15.4 In situ Application (or the Latest Progress) 386

15.4.1 UV-Vis Spectroscopy, Electrochemical, and DFT Study of Tris(β-diketonato)iron(III) Complexes with Application in DSSC: Role of Aromatic Thienyl Groups 386

15.4.2 Long-Term Energy Storage Systems Based on the Dihydroazulene/Vinylheptafulvene Photo-/Thermoswitch 386

15.4.3 Simultaneous Detection of Nitrate and Nitrite Based on UV Absorption Spectroscopy and Machine Learning 389

15.4.4 UV-Vis Spectrophotometer as an Alternative Technique for the Determination of Hydroquinone in Vinyl Acetate Monomer 390

15.4.5 Review: Applications of Online UV-Vis Spectrophotometer for Drinking Water Quality Monitoring and Process Control: A Review 391

15.5 Summary and Prospect 392

References 393

16 Raman Spectroscopy 397
Shuhua Guan, Enda Liao, Shuling Sun, Qiaoling Peng, Ke Zeng, Kyungsoo Shin, Xiuli Guo, and Xiaolong Zhou

16.1 Basic Principles of Raman Spectroscopy 397

16.2 Overview of Raman Spectroscopy 399

16.2.1 Raman Shift 399

16.2.2 The Component of Raman Spectrometer 399

16.2.3 Surface-enhanced Raman Spectroscopy 401

16.2.4 Main Application of Raman Spectroscopy 402

16.2.4.1 Application in Chemical Research 402

16.2.4.2 Application in Organic Polymer and Biology Research 403

16.2.4.3 Application in Drug and Police Drug Detection 403

16.3 Applications to Energy Storage Materials Research 403

16.3.1 Carbon-based Materials 403

16.3.2 Metallic Compound 407

16.3.3 Organic Materials 408

16.4 In-situ Analysis of Raman Spectroscopy 409

16.5 Summary and Prospect 411

References 412

17 Fourier Transform Infrared Spectroscopy 419
Bin Tang and Fan Zhang

17.1 Introduction 419

17.2 Basic Principles 420

17.2.1 Basic Principles of FTIR Spectroscopy 420

17.2.2 Basic Structure and Principle of FTIR Spectrometer 423

17.2.3 Principle and Equipment of In-situ FTIR Spectrometer 425

17.3 Traditional Application on Energy Storage Materials 426

17.4 In-situ Application 430

17.4.1 In-situ FTIR Spectroscopy 430

17.4.2 In-situ Microscope Fourier Transform Infrared Reflection Spectroscopy 436

17.4.3 In-situ Polarization Modulation Fourier Transform Infrared Spectroscopy 437

17.5 Summary and Prospect 440

References 440

18 Optical Microscopy 447
Fan Zhang and Yike Wei

18.1 Introduction 447

18.2 Basic Principles 448

18.2.1 Traditional Optical Microscope 448

18.2.2 Near-field Optical Microscope 450

18.2.2.1 The Theory of Near-field Optical Microscope 451

18.2.2.2 The Classification of Near-field Optical Microscopes 454

18.2.2.3 Structure and Application of Near-field Optical Microscope 455

18.3 The Application of Optical Microscopy 456

18.3.1 The Optical Microscopic Observation of Dendritic/ Electrodeposition 457

18.3.2 The Optical Microscope Observation of Electrode 461

18.3.3 The Optical Microscope Observation of Electrolyte 464

18.4 Summary and Prospect 465

References 466

Part IV Microwave Techniques 473

19 Nuclear Magnetic Resonance 475
Jianfeng Wen and Xin Lei

19.1 Introduction 475

19.2 Theoretical Basis of Nuclear Magnetic Resonance 476

19.2.1 General Principles 476

19.2.2 Pulsed-field Gradient NMR (PFG-NMR) 479

19.2.3 Solid-state NMR 481

19.2.4 In Situ NMR and MRI 482

19.3 Application on Battery Electrolytes 484

19.3.1 Electrolyte Degradation Analysis 484

19.3.1.1 Identification of Degradation Products 484

19.3.1.2 Explanation of the Degradation Mechanisms 485

19.3.2 Diffusion Condition and Ion Structure 486

19.3.2.1 Analysis of Ion Dissociation 487

19.3.2.2 Evaluation of the Ion Solvation Structure 487

19.3.2.3 Calculation of Ion Transference Number 489

19.3.3 In Situ NMR Applications 489

19.3.3.1 Determination of the Concentration Gradients 490

19.3.3.2 Monitoring Electrolyte Chemical Composition 491

19.4 Solid-state NMR for Battery Analysis 492

19.4.1 Electrode Materials 493

19.4.1.1 Cathodes 493

19.4.1.2 Anodes 497

19.4.2 Solid Electrolyte Interface 498

19.4.3 Solid-state Electrolyte 499

19.4.4 In Situ NMR and MRI 500

19.4.4.1 Cathodes 501

19.4.4.2 Anodes 502

19.4.4.3 In Situ MRI 503

19.5 Summary and Prospect 504

References 506

20 Electron Paramagnetic Resonance and Imaging 513
Chenjie Lou, Jie Liu, Jipeng Fu, and Mingxue Tang

20.1 Introduction 513

20.2 Ex situ EPR of Battery Materials 515

20.3 In situ EPR of Battery Materials 519

20.3.1 In Situ EPR of LIBs 521

20.3.2 In Situ EPR Imaging of LIBs and SIBs 530

20.4 Summary and Prospect 534

Acknowledgments 535

References 535

Part V Electron Techniques 541

21 Morphology Dependent Energy Storage Performance of Supercapacitors and Batteries: Scanning Electron Microscopy as an Essential Tool for Material Characterization 543
Surjit Sahoo and Chandra Sekhar Rout

21.1 Introduction 543

21.2 Zero-dimensional (0-D) Electrode Materials for Supercapacitors and Batteries 548

21.3 One-dimensional Nanostructured Electrode Materials for Supercapacitors and Batteries 554

21.4 Two-dimensional Nanostructured Electrode Materials for Supercapacitors and Batteries 559

21.5 3D Nanostructured Electrode Materials for Supercapacitors and Batteries 563

21.6 Conclusion 568

References 568

22 Transmission Electron Microscopy 573
Yue Gong and Lin Gu

22.1 Introduction 573

22.1.1 Basic Principles of Transmission Electron Microscopy 574

22.1.2 Scanning Transmission Electron Microscopy 575

22.1.3 Aberration Correction 576

22.1.4 Electron Energy Loss Spectroscopy and Energy Dispersion X-ray Spectroscopy 578

22.1.5 Atomic and Electronic Structures at Atomic Resolution 580

22.2 EM Research of Energy Storage Materials 580

22.2.1 Atomic Structure 581

22.2.2 Electronic Structure 584

22.2.2.1 Charge Structure 584

22.2.2.2 Orbital Structure 587

22.2.2.3 Spin Structure 587

22.3 In Situ EM Methods 587

22.3.1 In Situ Biasing and Heating 588

22.3.2 In Situ Liquid Cell 593

22.3.3 In Situ Environmental EM Method 593

22.3.4 In Situ Mechanical Method 595

22.4 Cutting-edge EM Methods for Energy Storage Material 596

22.4.1 Cryo-EM Methodology 596

22.4.2 Tomography 599

22.4.3 Ptychography, DPC, and 4D-STEM 599

22.5 Summary and Prospect 603

References 603

23 Cryo-Electron Microscopy 611
Ran Zhao, Anqi Zhang, Yahui Wang, Jingjing Yang, Xiaomin Han, Jiasheng Yue, Zhifan Hu, Chuan Wu, and Ying Bai

23.1 Development of Cryo-EM 611

23.2 Workflow of Cryo-EM Characterization 613

23.2.1 Sample Preparation 614

23.2.2 Sample Transfer 614

23.2.3 Data Acquisition 615

23.2.4 Analysis and Correlation with Performance 615

23.3 Interphase Characterization by Cryo-EM 617

23.3.1 SEI Composition and Evolution 618

23.3.1.1 LIBs with Liquid Electrolyte 618

23.3.1.2 Solid-state LIBs 623

23.3.1.3 Beyond Chemistry of Lithium 627

23.3.2 CEI Composition and Evolution 630

23.4 Material Characterization by Cryo-EM 632

23.4.1 Metal Deposition Behavior 632

23.4.2 Other Beam-Sensitive Materials 638

23.5 Perspective 642

References 645

24 Structural/Chemical Characterization of Alkali-ion Battery Materials Using Electron Energy-loss Spectroscopy Coupled with Transmission Electron Microscopy 653
Shunsuke Muto

24.1 Introduction 653

24.2 General Principles of EELS 655

24.2.1 Hardware and Basic Formula for Inelastic Scattering 655

24.2.2 Low Energy Loss Region (Low-loss Spectra; 0 < ΔE < 50 eV) 658

24.2.3 Core Electron Excitation Spectra (Core-loss) 659

24.2.4 Techniques for Visualizing Local Chemical States 662

24.2.4.1 Energy-filtered TEM (EF-TEM) 662

24.2.4.2 STEM-EELS Spectral Imaging 663

24.2.4.3 Signal Processing and Statistical Method Applications 664

24.2.5 Other Nonconventional Techniques 665

24.2.5.1 Spatially Resolved EELS (SR-EELS) 665

24.2.5.2 Site-selective Analysis (ALCHEMI Method) 666

24.3 Applications of S/TEM-EELS to the Analysis of Alkali Metal-ion Batteries and Other Energy Storage Materials 669

24.3.1 Degradation Analysis of Cathodes of Lithium-ion Batteries Associated with Charge/Discharge Cycles 669

24.3.1.1 NCA Cathode and its Mg-doping Effect 669

24.3.1.2 Lithium Analysis 677

24.3.1.3 Site-selective Valence State Measurement in LNMO Cathodes 680

24.3.2 Miscellaneous Analysis Examples 683

24.3.3 Anode Material of SIBs; Utilization of Low-loss 685

24.4 Concluding Remarks 689

Acknowledgments 690

References 690

25 Scanning Tunneling Microscope 697
Kaiye Zheng, Qianlin Luo, and Yongping Zheng

25.1 Introduction 697

25.2 General Principle of STM 699

25.2.1 The Quantum Tunneling Effect 699

25.2.2 Principle of STM 700

25.3 STM Research and Application in Electrocatalysis 701

25.3.1 Application of Surface Structure 701

25.3.2 Surface Active Site 706

25.4 Summary and Outlook 709

References 710

Part VI Advanced Techniques 713

26 Combined In situ/Operando Techniques 715
Yuanqi Lan and Wenjiao Yao

26.1 Introduction 715

26.2 Advantages and Necessity of Combined In situ/Operando Techniques 716

26.3 X-ray-based Combined In situ/Operando Techniques 719

26.3.1 Combination of Imaging and Spectroscopy 719

26.3.2 Combination of Spectroscopy and Scattering/Diffraction 724

26.3.3 Combination of Diffraction and Imaging 727

26.4 Other Combined In situ/Operando Techniques 731

26.4.1 Xrd-ae 731

26.4.2 Afm-etem 733

26.4.3 Ec-ters 734

26.4.4 Dems-deirs 736

26.4.5 Optical Stress-sensor-based MEMS-Raman 737

26.4.6 Lcm-dim 741

26.5 Summary and Prospective 741

References 742

27 Non-destructive Technologies 747
Tianyi Song and Wenjiao Yao

27.1 Introduction 747

27.2 Acoustic Fundamental Theory 748

27.3 Acoustic Emission (AE) 749

27.3.1 Instrumentation and Principles 750

27.3.2 Applications in Energy Storage System 752

27.4 Ultrasonic Testing (UT) 757

27.4.1 Fundamental Principles and Instrumentation 757

27.4.2 Applications in Energy Storage Systems 762

27.4.2.1 SoC and SoH Monitoring 762

27.4.2.2 Ultrasonic Imaging 766

27.4.2.3 Combination Techniques Based on Ultrasonic Testing 768

27.5 Summary and Outlook 769

References 771

Index 777

Authors

Yongbing Tang Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS), China. Wenjiao Yao Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS), China.