Energy Storage Materials Characterization summarizes the basic methods used to determine the properties and performance of energy storage materials and details a wide range of techniques used in electrochemical testing, including X-ray, neutron, optical, microwave, electron, and scanning probe techniques. Representative examples of each technique are presented to illustrate their powerful capabilities and offer a general strategy for future development of the original techniques.
Preceding the main text, a helpful introduction covers topics including the overall energy consumption structure of the modern world, various existing forms of energy and electrochemical energy storage, known problems with energy storage materials such as lithium-ion batteries, and specifics of electrochemical impedance spectroscopy (EIS).
Written by two highly qualified academics with significant research experience in the field, Energy Storage Materials Characterization includes information such as: - Photoemission spectroscopy, X-ray pair distribution function to investigate battery systems, and cryo-electron microscopy- X-ray diffraction, absorption spectroscopy, fluorescence and tomography microscopy, and neutron scattering, depth profile, and imaging- UV-Vis spectroscopy for energy storage and related materials, Raman spectroscopy, Fourier transform infrared spectroscopy, and optical microscopy- Structural and chemical characterization of alkali-ion battery materials using electron energy-loss spectroscopy coupled with transmission electron microscopy
Energy Storage Materials Characterization is an essential up-to-date reference on the subject for chemists and materials scientists involved in research related to improving electrochemical energy storage systems for superior battery performance.
Table of Contents
Volume I
Preface xiii
1 Introduction 1
Bifa Ji, Xin Lei, Rui Yang, and Yongbing Tang
1.1 Energy 1
1.1.1 Energy Utilization and Development Tendency 2
1.1.2 Forms of Energy Storage and Electrochemical Energy Storage 4
1.1.3 The Target and Key Problem of Energy Storage Materials 5
1.1.4 The Analysis Method Summary 8
1.2 Electrochemical Techniques in Battery Research 11
1.2.1 Charge/Discharge Measurement 11
1.2.2 Cyclic Voltammetry 15
1.2.3 Electrochemical Impedance Spectroscopy (EIS) 18
1.2.4 Electrochemical Measurements of Diffusion Coefficient 21
References 23
Part I X-ray Techniques 27
2 X-ray Diffraction 29
Xuewu Ou
2.1 Introduction of X-ray Diffraction 29
2.1.1 Qualitative Analysis 30
2.1.2 Quantitative Analysis 30
2.1.3 Crystallinity Analysis 31
2.1.4 Residual Stress Determination 31
2.1.5 Determination of Grain Size 31
2.1.6 Lattice Parameter Determination 32
2.2 Working Principle and Configuration of X-ray Diffraction 32
2.2.1 Working Principle of X-ray Diffraction 32
2.2.2 The Basic Configuration of X-ray Diffraction 34
2.2.2.1 X-ray Generator 34
2.2.2.2 Goniometer 35
2.2.2.3 Recorder 35
2.2.3 Different Types of XRD Testing Techniques 35
2.2.3.1 Single Crystal Diffraction and Polycrystalline Diffraction 35
2.2.3.2 Conventional X-ray Diffraction and Small-Angle Diffraction 36
2.3 Applications of X-ray Diffraction in Electrochemical Energy Storage 36
2.3.1 Applications of Traditional XRD in Electrochemical Energy Storage 36
2.3.1.1 Crystal Structure Characterization of Electrode Materials 37
2.3.1.2 Study on Electrochemical Reaction Mechanism 39
2.3.1.3 Developing New Electrode Materials 40
2.3.2 In Situ XRD and Its Application in Electrochemical Energy Storage 42
2.3.2.1 Principle and Basic Configuration of In Situ XRD 42
2.3.2.2 Applications of In Situ XRD in Energy Storage Materials 43
2.4 Summary and Prospects 44
References 45
3 X-ray Absorption Spectroscopy 49
Pinit Kidkhunthod, Jintara Padchasri, Sumeth Siriroj, Amorntep Montreeuppathum, Yingyot Poo-arporn, and Sarayut Tunmee
3.1 Theory of XAS 49
3.1.1 X-ray Absorption Near Edge Structure (XANES) 50
3.1.1.1 Pre-edge Region 51
3.1.1.2 Absorption Edge 51
3.1.1.3 XANES Spectra 51
3.1.2 Extended X-ray Absorption Fine Structure (EXAFS) 51
3.1.3 Summary of XAS: Pros and Cons 54
3.2 XAS Beamlines 54
3.3 Ex Situ and In Situ (Operando) Studies on the Investigation of a Battery at Work 58
3.4 Case Studies in Battery Materials 60
3.4.1 Ex Situ Studies of the Effect of Ni Content in Lithium Nickel Borate Glasses Electrode 60
3.4.2 In situ studies of Dynamic Phase Transition in Olivine Cathode for Li-Ion Batteries 62
References 64
4 Photoemission Spectroscopy for Energy Storage Materials 67
Hideki Nakajima
4.1 Introduction 67
4.2 Basic Principles 69
4.2.1 Background 69
4.2.2 XPS Overview 71
4.3 Applications to Energy Storage Materials 75
4.3.1 Laboratory-based (Conventional) XPS 75
4.3.2 Laboratory-based HAX PES 78
4.3.3 SR-based PES Including HAX PES and Related Techniques 80
4.3.4 NAP PES in the SOX range 83
4.3.5 NAP PES in the HAX Range 87
4.4 Summary and Prospect 89
References 90
5 Application of X-ray Pair Distribution Function to Batteries 99
Chong Chen
5.1 Introduction 99
5.2 Principles and Methods 100
5.2.1 Total Scattering Conversion 102
5.2.2 Computational Analysis 105
5.2.2.1 Real-Space Rietveld Method 105
5.2.2.2 Reverse Monte Carlo (RMC) Simulation 106
5.2.2.3 DFT/Molecular Dynamics Coupling 108
5.2.3 Power of PDF Methods 109
5.2.3.1 Defects and Local Disorders 109
5.2.3.2 Nanomaterials 110
5.2.3.3 Amorphous or Glassy Solids 113
5.3 Applications in Electrochemical Energy Storage 115
5.3.1 Static Local Structure in Electrode Materials 116
5.3.2 Dynamically Evolved Local Structure under Battery Operation 117
5.3.3 In Situ PDF Measurement for Operating Battery 119
5.4 Concluding Remarks 120
Acknowledgments 121
References 121
6 X-ray Fluorescence Microscopy 127
Xuewu Ou
6.1 The Introduction of X-ray Fluorescence 127
6.2 The Working Principle and Equipment Configuration of X-ray Fluorescence 128
6.2.1 The Working Principle of X-ray Fluorescence 128
6.2.2 Basic Configuration of X-ray Fluorescence 130
6.2.3 Handheld XRF Spectrometer 130
6.2.4 The Development Trends of XRF Spectrometer 131
6.3 Applications of X-ray Fluorescence Spectrometer in Energy Storage Materials 132
6.3.1 Application of Conventional X-ray Fluorescence Spectrometer in Energy Storage Materials 132
6.3.2 Application of In Situ Synchrotron Radiation XRF in Energy Storage Materials 135
6.4 Summary and Prospect 138
References 139
7 X-ray Tomography 141
Qirong Liu, Yunjie Lin, and Xinyu Yang
7.1 Introduction 141
7.2 General Fundamentals of XRT 142
7.2.1 Attenuation Contrast-based XRT 142
7.2.2 Phase Contrast-based XRT 144
7.3 Applications of XRT in the Field of Electrochemical Energy Storage 145
7.3.1 Structural and Compositional Evolution 146
7.3.2 Electrochemical Dynamics 149
7.3.3 Device Degradation 150
7.4 Concluding Remarks 152
References 153
8 Transmission X-ray Microscopy 155
Xiao Zheng
8.1 Introduction 155
8.2 Basic Principles of Transmission X-ray Microscopy 156
8.3 Morphology and Chemical Mapping of Energy Storage Materials by Txm 158
8.3.1 TXM of the Galvanostatic Growth of PbSO 4 on Pb 158
8.3.2 TXM of the Cu 6 Sn 5 Anode 159
8.3.3 TXM of the Co 3 O 4 /Graphene Composite and Sodium Titanate 161
8.3.4 TXM of Sulfur Composite Cathode 162
8.3.5 TXM of Discharge Products of Li-O 2 Batteries 163
8.3.6 TXM of Discharge Products of Na-O 2 Batteries 166
8.4 Applications of In-situ TXM in Energy Storage Materials 168
8.4.1 In-situ TXM of Lithium Anodes 168
8.4.2 In-situ TXM of Ge and Ge 0.9 Se 0.1 Anodes 170
8.4.3 In-situ TXM of Sn and Sn-Containing Compound Anodes 174
8.4.4 In-situ TXM of Zn Anode 180
8.4.5 In-situ TXM of Li 2 MnO 3 ⋅LiMO 2 cathode 181
8.4.6 In-situ TXM of Sulfur Cathodes 182
8.5 Summary and Prospect 185
References 186
9 Coherent X-ray Diffractive Imaging 195
Qirong Liu and Yuhan Liu
9.1 Introduction 195
9.2 General Fundamentals of CXDI Techniques 196
9.2.1 Working Principle 196
9.2.2 Phase Problem 197
9.2.3 Phase Retrieval Algorithms 199
9.2.4 CXDI Methods 200
9.3 The Application of CXDI Techniques in Electrochemical Field 203
9.3.1 Phase Transformation 203
9.3.2 Structure and Strain Evolution 205
9.3.3 Degradation Mechanism 207
9.4 Concluding Remarks 209
References 209
Part II Neutron Techniques 213
10 Neutron Techniques 215
XuXu Wang, Luan Fang, Zhuomei Wu, Ruxiu He, Jinhui Li, Shuang Liu, and Ping Nie
10.1 Introduction 215
10.2 Basic Principles 217
10.3 Application on Energy Storage Materials 219
10.3.1 Lithium-ion Batteries 221
10.3.1.1 Neutron Powder Diffraction 223
10.3.1.2 Small and Ultra-small Angle Neutron Scattering 228
10.3.1.3 Neutron Reflection 230
10.3.1.4 Neutron Imaging 230
10.3.1.5 Neutron Depth Profile 231
10.3.2 Sodium-ion Batteries 233
10.3.2.1 Cathode Materials 233
10.3.2.2 Neutron Diffraction 233
10.3.2.3 In situ Neutron Diffraction 238
10.3.2.4 Neutron Scattering 240
10.3.2.5 Anode Materials 240
10.3.2.6 In situ Small-angle Neutron Scattering 242
10.3.2.7 Solid State and Liquid Electrolytes 242
10.3.2.8 In Situ Neutron Diffraction 243
10.3.3 Potassium-ion Batteries 244
10.3.3.1 Cathode Materials 245
10.3.3.2 Anode Materials 245
10.3.3.3 Electrolytes 247
10.3.4 Other Battery Systems 248
10.3.4.1 Magnesium-ion Batteries 248
10.3.4.2 Zinc-ion Batteries 250
10.3.4.3 Calcium-ion Batteries 251
10.3.4.4 Aluminum-ion Batteries 251
10.4 Summary and Prospect 251
Author Contributions 253
References 253
11 Neutron Diffraction for Energy Storage Materials 263
Sichen Jiao, Xuelong Wang, and Xiqian Yu
11.1 General Background and Introduction 263
11.2 Overview of Neutron as a Probe of Structural Characterization 265
11.2.1 Neutron’s Strength in Structural Characterization 265
11.2.2 Review of Basic Concepts in Neutron Scattering 266
11.2.3 Theoretical Background for Neutron Diffraction and Total Scattering 267
11.3 Ex situ Neutron Structural Characterization 270
11.3.1 Average Structure 270
11.3.1.1 Crystalline Structure 271
11.3.1.2 Magnetic Structure 275
11.3.1.3 Diffusion Pathway 278
11.3.2 Local Structure 281
11.4 In situ Structure Detection by Neutron 286
11.5 Summary and Outlook 292
References 293
12 Neutron Scattering 299
Qingguang Pan
12.1 Introduction 299
12.2 Basic Principles 301
12.2.1 Neutron Production 301
12.2.2 Neutron Radiation 302
12.2.3 Neutron Scattering 304
12.2.4 Neutron Pair Distribution Function 307
12.3 Traditional Application on Energy Storage Materials 308
12.3.1 Interaction of Neutrons with Energy Storage Materials 308
12.3.2 Neutron Structural Studies of Batteries 309
12.3.3 In situ/Operando SANS 313
12.3.4 NPDF Application 317
12.4 Summary and Prospect 319
References 319
13 Neutron Depth Profile 325
Luojiang Zhang and Hao Cheng
13.1 Introduction 325
13.2 Application of NDP in Lithium-based Rechargeable Batteries 329
13.2.1 Application in Organic Electrolyte Lithium-based Rechargeable Batteries 329
13.2.2 Application in Solid-State Electrolyte Lithium-Based Rechargeable Batteries 336
13.2.3 Application in Gel Polymer Electrolyte Lithium-Based Rechargeable Batteries 342
13.3 Conclusions and Perspective 342
References 344
14 Neutron Imaging 349
Rui Jia and Fan Zhang
14.1 Introduction 349
14.2 Basic Principles and NI System 350
14.2.1 Basic Principles 350
14.2.2 NI System 351
14.3 Applications of NI in Energy Storage Materials and Devices 352
14.3.1 Ex-situ Applications on Energy Storage Materials and Devices 353
14.3.2 In-situ Applications on Energy Storage Materials and Devices 355
14.4 Summary and Prospects 361
References 363
Volume II
Preface xiii
Part III Optical Techniques 371
15 UV-Vis Spectroscopy for Energy Storage and Related Materials 373
Jiratchaya Ayawanna, Salisa Chaiyaput, Pinit Kidkhunthod, Phongsapak Sittimart, Anthika Lakhonchai, and Sarayut Tunmee
15.1 Introduction 373
15.2 Basic Principles 374
15.2.1 Strengths UV-Vis Spectroscopy 379
15.2.2 Limitations of UV-Vis Spectroscopy 379
15.2.3 Overview of Typical UV-Vis Applications 380
15.3 Traditional Application of UV-Vis Spectroscopy on Energy Storage Materials 381
15.3.1 In situ Raman and UV-Vis Spectroscopic Analysis of Lithium-ion Batteries 381
15.3.2 Energy Storage in Bifunctional TiO 2 Composite Materials under UV and Visible Light 383
15.3.3 Application of In Operando UV-Vis Spectroscopy in Lithium-Sulfur Batteries 384
15.3.4 Investigation on Thermal Properties of Al 2 O 3 -based Phase Change Material Composite for Solar Thermal System Application 385
15.4 In situ Application (or the Latest Progress) 386
15.4.1 UV-Vis Spectroscopy, Electrochemical, and DFT Study of Tris(β-diketonato)iron(III) Complexes with Application in DSSC: Role of Aromatic Thienyl Groups 386
15.4.2 Long-Term Energy Storage Systems Based on the Dihydroazulene/Vinylheptafulvene Photo-/Thermoswitch 386
15.4.3 Simultaneous Detection of Nitrate and Nitrite Based on UV Absorption Spectroscopy and Machine Learning 389
15.4.4 UV-Vis Spectrophotometer as an Alternative Technique for the Determination of Hydroquinone in Vinyl Acetate Monomer 390
15.4.5 Review: Applications of Online UV-Vis Spectrophotometer for Drinking Water Quality Monitoring and Process Control: A Review 391
15.5 Summary and Prospect 392
References 393
16 Raman Spectroscopy 397
Shuhua Guan, Enda Liao, Shuling Sun, Qiaoling Peng, Ke Zeng, Kyungsoo Shin, Xiuli Guo, and Xiaolong Zhou
16.1 Basic Principles of Raman Spectroscopy 397
16.2 Overview of Raman Spectroscopy 399
16.2.1 Raman Shift 399
16.2.2 The Component of Raman Spectrometer 399
16.2.3 Surface-enhanced Raman Spectroscopy 401
16.2.4 Main Application of Raman Spectroscopy 402
16.2.4.1 Application in Chemical Research 402
16.2.4.2 Application in Organic Polymer and Biology Research 403
16.2.4.3 Application in Drug and Police Drug Detection 403
16.3 Applications to Energy Storage Materials Research 403
16.3.1 Carbon-based Materials 403
16.3.2 Metallic Compound 407
16.3.3 Organic Materials 408
16.4 In-situ Analysis of Raman Spectroscopy 409
16.5 Summary and Prospect 411
References 412
17 Fourier Transform Infrared Spectroscopy 419
Bin Tang and Fan Zhang
17.1 Introduction 419
17.2 Basic Principles 420
17.2.1 Basic Principles of FTIR Spectroscopy 420
17.2.2 Basic Structure and Principle of FTIR Spectrometer 423
17.2.3 Principle and Equipment of In-situ FTIR Spectrometer 425
17.3 Traditional Application on Energy Storage Materials 426
17.4 In-situ Application 430
17.4.1 In-situ FTIR Spectroscopy 430
17.4.2 In-situ Microscope Fourier Transform Infrared Reflection Spectroscopy 436
17.4.3 In-situ Polarization Modulation Fourier Transform Infrared Spectroscopy 437
17.5 Summary and Prospect 440
References 440
18 Optical Microscopy 447
Fan Zhang and Yike Wei
18.1 Introduction 447
18.2 Basic Principles 448
18.2.1 Traditional Optical Microscope 448
18.2.2 Near-field Optical Microscope 450
18.2.2.1 The Theory of Near-field Optical Microscope 451
18.2.2.2 The Classification of Near-field Optical Microscopes 454
18.2.2.3 Structure and Application of Near-field Optical Microscope 455
18.3 The Application of Optical Microscopy 456
18.3.1 The Optical Microscopic Observation of Dendritic/ Electrodeposition 457
18.3.2 The Optical Microscope Observation of Electrode 461
18.3.3 The Optical Microscope Observation of Electrolyte 464
18.4 Summary and Prospect 465
References 466
Part IV Microwave Techniques 473
19 Nuclear Magnetic Resonance 475
Jianfeng Wen and Xin Lei
19.1 Introduction 475
19.2 Theoretical Basis of Nuclear Magnetic Resonance 476
19.2.1 General Principles 476
19.2.2 Pulsed-field Gradient NMR (PFG-NMR) 479
19.2.3 Solid-state NMR 481
19.2.4 In Situ NMR and MRI 482
19.3 Application on Battery Electrolytes 484
19.3.1 Electrolyte Degradation Analysis 484
19.3.1.1 Identification of Degradation Products 484
19.3.1.2 Explanation of the Degradation Mechanisms 485
19.3.2 Diffusion Condition and Ion Structure 486
19.3.2.1 Analysis of Ion Dissociation 487
19.3.2.2 Evaluation of the Ion Solvation Structure 487
19.3.2.3 Calculation of Ion Transference Number 489
19.3.3 In Situ NMR Applications 489
19.3.3.1 Determination of the Concentration Gradients 490
19.3.3.2 Monitoring Electrolyte Chemical Composition 491
19.4 Solid-state NMR for Battery Analysis 492
19.4.1 Electrode Materials 493
19.4.1.1 Cathodes 493
19.4.1.2 Anodes 497
19.4.2 Solid Electrolyte Interface 498
19.4.3 Solid-state Electrolyte 499
19.4.4 In Situ NMR and MRI 500
19.4.4.1 Cathodes 501
19.4.4.2 Anodes 502
19.4.4.3 In Situ MRI 503
19.5 Summary and Prospect 504
References 506
20 Electron Paramagnetic Resonance and Imaging 513
Chenjie Lou, Jie Liu, Jipeng Fu, and Mingxue Tang
20.1 Introduction 513
20.2 Ex situ EPR of Battery Materials 515
20.3 In situ EPR of Battery Materials 519
20.3.1 In Situ EPR of LIBs 521
20.3.2 In Situ EPR Imaging of LIBs and SIBs 530
20.4 Summary and Prospect 534
Acknowledgments 535
References 535
Part V Electron Techniques 541
21 Morphology Dependent Energy Storage Performance of Supercapacitors and Batteries: Scanning Electron Microscopy as an Essential Tool for Material Characterization 543
Surjit Sahoo and Chandra Sekhar Rout
21.1 Introduction 543
21.2 Zero-dimensional (0-D) Electrode Materials for Supercapacitors and Batteries 548
21.3 One-dimensional Nanostructured Electrode Materials for Supercapacitors and Batteries 554
21.4 Two-dimensional Nanostructured Electrode Materials for Supercapacitors and Batteries 559
21.5 3D Nanostructured Electrode Materials for Supercapacitors and Batteries 563
21.6 Conclusion 568
References 568
22 Transmission Electron Microscopy 573
Yue Gong and Lin Gu
22.1 Introduction 573
22.1.1 Basic Principles of Transmission Electron Microscopy 574
22.1.2 Scanning Transmission Electron Microscopy 575
22.1.3 Aberration Correction 576
22.1.4 Electron Energy Loss Spectroscopy and Energy Dispersion X-ray Spectroscopy 578
22.1.5 Atomic and Electronic Structures at Atomic Resolution 580
22.2 EM Research of Energy Storage Materials 580
22.2.1 Atomic Structure 581
22.2.2 Electronic Structure 584
22.2.2.1 Charge Structure 584
22.2.2.2 Orbital Structure 587
22.2.2.3 Spin Structure 587
22.3 In Situ EM Methods 587
22.3.1 In Situ Biasing and Heating 588
22.3.2 In Situ Liquid Cell 593
22.3.3 In Situ Environmental EM Method 593
22.3.4 In Situ Mechanical Method 595
22.4 Cutting-edge EM Methods for Energy Storage Material 596
22.4.1 Cryo-EM Methodology 596
22.4.2 Tomography 599
22.4.3 Ptychography, DPC, and 4D-STEM 599
22.5 Summary and Prospect 603
References 603
23 Cryo-Electron Microscopy 611
Ran Zhao, Anqi Zhang, Yahui Wang, Jingjing Yang, Xiaomin Han, Jiasheng Yue, Zhifan Hu, Chuan Wu, and Ying Bai
23.1 Development of Cryo-EM 611
23.2 Workflow of Cryo-EM Characterization 613
23.2.1 Sample Preparation 614
23.2.2 Sample Transfer 614
23.2.3 Data Acquisition 615
23.2.4 Analysis and Correlation with Performance 615
23.3 Interphase Characterization by Cryo-EM 617
23.3.1 SEI Composition and Evolution 618
23.3.1.1 LIBs with Liquid Electrolyte 618
23.3.1.2 Solid-state LIBs 623
23.3.1.3 Beyond Chemistry of Lithium 627
23.3.2 CEI Composition and Evolution 630
23.4 Material Characterization by Cryo-EM 632
23.4.1 Metal Deposition Behavior 632
23.4.2 Other Beam-Sensitive Materials 638
23.5 Perspective 642
References 645
24 Structural/Chemical Characterization of Alkali-ion Battery Materials Using Electron Energy-loss Spectroscopy Coupled with Transmission Electron Microscopy 653
Shunsuke Muto
24.1 Introduction 653
24.2 General Principles of EELS 655
24.2.1 Hardware and Basic Formula for Inelastic Scattering 655
24.2.2 Low Energy Loss Region (Low-loss Spectra; 0 < ΔE < 50 eV) 658
24.2.3 Core Electron Excitation Spectra (Core-loss) 659
24.2.4 Techniques for Visualizing Local Chemical States 662
24.2.4.1 Energy-filtered TEM (EF-TEM) 662
24.2.4.2 STEM-EELS Spectral Imaging 663
24.2.4.3 Signal Processing and Statistical Method Applications 664
24.2.5 Other Nonconventional Techniques 665
24.2.5.1 Spatially Resolved EELS (SR-EELS) 665
24.2.5.2 Site-selective Analysis (ALCHEMI Method) 666
24.3 Applications of S/TEM-EELS to the Analysis of Alkali Metal-ion Batteries and Other Energy Storage Materials 669
24.3.1 Degradation Analysis of Cathodes of Lithium-ion Batteries Associated with Charge/Discharge Cycles 669
24.3.1.1 NCA Cathode and its Mg-doping Effect 669
24.3.1.2 Lithium Analysis 677
24.3.1.3 Site-selective Valence State Measurement in LNMO Cathodes 680
24.3.2 Miscellaneous Analysis Examples 683
24.3.3 Anode Material of SIBs; Utilization of Low-loss 685
24.4 Concluding Remarks 689
Acknowledgments 690
References 690
25 Scanning Tunneling Microscope 697
Kaiye Zheng, Qianlin Luo, and Yongping Zheng
25.1 Introduction 697
25.2 General Principle of STM 699
25.2.1 The Quantum Tunneling Effect 699
25.2.2 Principle of STM 700
25.3 STM Research and Application in Electrocatalysis 701
25.3.1 Application of Surface Structure 701
25.3.2 Surface Active Site 706
25.4 Summary and Outlook 709
References 710
Part VI Advanced Techniques 713
26 Combined In situ/Operando Techniques 715
Yuanqi Lan and Wenjiao Yao
26.1 Introduction 715
26.2 Advantages and Necessity of Combined In situ/Operando Techniques 716
26.3 X-ray-based Combined In situ/Operando Techniques 719
26.3.1 Combination of Imaging and Spectroscopy 719
26.3.2 Combination of Spectroscopy and Scattering/Diffraction 724
26.3.3 Combination of Diffraction and Imaging 727
26.4 Other Combined In situ/Operando Techniques 731
26.4.1 Xrd-ae 731
26.4.2 Afm-etem 733
26.4.3 Ec-ters 734
26.4.4 Dems-deirs 736
26.4.5 Optical Stress-sensor-based MEMS-Raman 737
26.4.6 Lcm-dim 741
26.5 Summary and Prospective 741
References 742
27 Non-destructive Technologies 747
Tianyi Song and Wenjiao Yao
27.1 Introduction 747
27.2 Acoustic Fundamental Theory 748
27.3 Acoustic Emission (AE) 749
27.3.1 Instrumentation and Principles 750
27.3.2 Applications in Energy Storage System 752
27.4 Ultrasonic Testing (UT) 757
27.4.1 Fundamental Principles and Instrumentation 757
27.4.2 Applications in Energy Storage Systems 762
27.4.2.1 SoC and SoH Monitoring 762
27.4.2.2 Ultrasonic Imaging 766
27.4.2.3 Combination Techniques Based on Ultrasonic Testing 768
27.5 Summary and Outlook 769
References 771
Index 777