Wastewater treatment plants are critical in protecting both the environment’s resources and human health. A wastewater treatment plant’s technological system focuses not only on the effectiveness of the treatment but on the costs and energy consumption of the entire system. Municipal wastewater treatment produces a significant amount of sewage sludge all over the world. The majority of this sludge’s dry matter content is made up of organic compounds which are not toxic, and they consist of both primary and secondary (microbiological) sludge. There is also a substantial quantity of inorganic substances in the sludge, along with a small quantity of toxic matter. Also, various raw sewage treatment options can include energy production (heat, electricity, or biofuel) to reduce dependence on external energy supply during treatment. The most important options used for energy production from sewage and biomass can use the following approaches: anaerobic digestion, co-digestion, incineration with energy recovery, co-incineration, pyrolysis, gasification, supercritical (wet) oxidation, and hydrolysis. Generally, these processes or methods are cost-effective, but they can still have some setbacks related to the nature of the methods or the raw material used for conversion. There are also operating conditions to comply with to get a successful outcome.
This book combines information from many disciplines related to wastewater treatment technologies to show how the circular economy approach can be used to achieve zero waste and produce energy that can be useful for plants and communities. This approach focuses on clean technologies for green energy resources such as biohydrogen, biofuels, and biogas from biomass and sewage sludge for zero waste production. This is aimed to also integrate the issue of energy demand and the one of energy production.
Table of Contents
1 Thermal/Photocatalytic Conversion of Sewage Sludge and Biomass to Energy 1
Maria Siddique, Sumia Akram, Zainab Liaqat and Muhammad Mushtaq
2 Sewage Sludge Conversion to Sustainable Energy: Biogas, Methane, Hydrogen, and Biofuels 43
El Asri Ouahid, Ben EL Caid Mohamed, Yousfi Ikram and BenKaddour Rachid
3 Biodiesel from Sewage Sludge 73
Sonica Sondhi and Roopali Sharma
4 Carbon Emissions, Energy Reduction, and Energy Recovery from Wastewater Treatment Plants 93
Abas Siraj Hamda, Dinsefa Mensur, Belay Berhane, Sunaina and Tatek Temesgen
5 Integrated Use of Biomass to Produce Energy and Construction Material 113
Samavia Fiaz, Mehwish Khalid, Sumia Akram and Muhammad Mushtaq
6 Technical and Economic Evaluation of Old and Novel Technologies for Energy Resources Production from Wastewater Treatment Plants 151
Shubhankar Mishra, Tohira Banoo, Yogendra Kumar and Subbiah Nagarajan
7 Recovery of Cellulose and Extracellular Polymers from Sewage Sludge 175
Muthumari Perumal, Varalakshmi Varatharajan, V. Karthik, Selvakumar Periyasamy and Beula Isabel
8 Wastewater-Derived Biomass for Energy 195
Surbhi Sharma, Ridhika Bangotra, Bisma Habib, Muskaan Chib, Arpana Thakur, Ritu Mahajan and Bijender Kumar Bajaj
9 Recovery of Value-Added Products from Sewage Sludge: Processes, Life Cycle Assessment, and Costs 225
Abiola E. Taiwo, Olayomi A. Falowo, Anthony I. Okoji, Lekan M. Latinwo and Eriola Betiku
10 Various Biomasses from Wastewater and Possibilities of Conversion to Energy Resources 259
Neelaambhigai Mayilswamy and Balasubramanian Kandasubramanian
11 Recycled Wastewater from Sewage Treatment Plants for Sustainable Agriculture 283
Anuska Raichoudhury, Radha Sankar Mal, Ranjay Kumar Thakur, Subhankar Mishra, Mukesh Singh and Amit Biswas
12 Recovery of Value-Added Products from Sewage Sludge Using Biological Processes 327
Nadia Akram, Khalid Mahmood Zia, Muhammad Usman, Fozia Anjum and Sana Pervaiz
13 Wastewater Treatment Processes and Resource Recovery, Effectiveness, and Challenges 347
Urvashi Tomar and Pallavi Jain
14 Circular Bioeconomy in the Recovery of Polymers from Sewage Sludge 365
Merry Meryam Martgrita and Siti Khodijah Chaerun
15 Recycled Wastewater from Sewage Treatment Plant for Sustainable Agriculture: An Indian Scenario 391
Aruna Jyothi Kora
Acknowledgments 408
References 408
Index 413