The book will be a valuable reference resource for academic and industrial researchers, materials scientists and engineers, physicists, chemists, biologists, and nanotechnologists working on the research and development of high-performance graphene quantum dots-based nanomaterials.
Table of Contents
1. Quantum dots: An introduction to basics and classification 2. Graphene quantum dots: Structure, synthesis, and features/applications 3. Polymer and graphene quantum dots derived nanocomposites: Fundamentals, characteristics, processing and applications 4. Graphene quantum dots and inorganic nanoparticles filled nanocomposites/hybrids 5. Progresses in thermoplastic/thermosets polymeric nanocomposites reinforced with graphene quantum dots 6. Advancements in conducting polymer/graphene quantum dots and rubber/graphene quantum dots nanocomposites 7. Energy storage and conversion devices using graphene quantum dots filled nanocomposites: Supercapacitors, Li-ion batteries and solar cells 8:.Graphene quantum dots derivative nanocomposites for environmental and sustainability applications 9. Performance of graphene quantum dots reinforced nanocomposites for anticorrosion coatings and electromagnetic interference radiation shielding fields (Ayesha Kausar and Esmaeal Ghavanloo) 10. Multifunctional graphene quantum dots nanocomposites in biomedical sector 11. Industrial and future scenarios of graphene quantum dots derived nanocomposites
Authors
Ayesha Kausar National Centre for Physics, Islamabad, Pakistan.Ayesha Kausar currently works for the National Centre for Physics in Islamabad, Pakistan. She was previously affiliated with Quaid-i-Azam University and the National University of Sciences and Technology, both in Islamabad, Pakistan. She obtained her PhD from Quaid-i-Azam University and the Korea Advanced Institute of Science and Technology, Daejeon, South Korea. Dr. Kausar's current research interests include the design, fabrication, characterization, and exploration of structure-property relationships and potential prospects of nanocomposites, polymeric nanocomposites, polymeric composites, polymeric nanoparticles, polymer dots, nanocarbon materials (graphene and derivatives, carbon nanotube, nano-diamond, carbon nano-onion, carbon nano-coil, carbon nanobelt, carbon nano-disk, carbon dot, and other nanocarbons), hybrid materials, eco-friendly materials, nanocomposite nanofibers, and nanofoam architectures. Consideration of morphological, mechanical, thermal, electrical, anticorrosion, barrier, flame retardant, radiation shielding, biomedical, and other essential materials properties for aerospace, automotive, fuel cell membranes, Li-ion battery electrodes, electronics, sensors, solar cells, water treatment, gas separation, textiles, energy production and storage devices, biomaterials, and other technical relevance are among her notable research concerns.