+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Thermal Properties Measurement of Materials. Edition No. 2. ISTE Invoiced

  • Book

  • 448 Pages
  • January 2025
  • John Wiley and Sons Ltd
  • ID: 5998478

The control of energy in the industrial sector and the reduction of consumption in the building sector will be key elements in the energy transition. In order to achieve these objectives it is necessary to use materials with energy performance adapted to their use as well as insulators or super-insulators. In both cases, a thorough knowledge of their thermal properties will be required for optimal success.

This revised and updated 2nd edition of Thermal Properties Measurement of Materials enables the reader to choose the measurement method best suited to the material they are characterizing and provides all of the information required in order to implement it with maximum precision.

This work is intended to be accessible to anyone who needs to measure the thermal properties of a material, whether or not they are a thermal engineer.

Table of Contents

Preface xi

List of Notations xv

Chapter 1. Modeling of Heat Transfer 1

1.1. The different modes of heat transfer 1

1.2. Modeling heat transfer by conduction 8

1.3. The thermal properties of a material 37

Chapter 2. Tools and Methods for Thermal Characterization 43

2.1. Measurement of temperature 43

2.2. Tools for parameter estimation 56

Chapter 3. Steady-State Methods 89

3.1. Introduction 89

3.2. Guarded hot plate 90

3.3. Center hot plate 92

3.4. Hot strip 99

3.5. Hot tube 105

3.6. Cut bar 113

3.7. Calibrated tiny hot plate (CTHP) 121

3.8. Fluxmetric method 130

Chapter 4. Flux/Temperature Transient Methods 141

4.1. Introduction 141

4.2. Infinite hot plate 141

4.3. Finite hot plate 152

4.4. Hot wire 158

4.5. Parallel hot wire 168

4.6. Anistropic parallel hot wire 175

4.7. Flash 1D 182

4.8. Flash 3D 212

4.9. Hot disk 228

4.10. Hot strip 237

4.11. 3ω Method 252

4.12. Calorimetry 258

Chapter 5. Transient Temperature/Temperature Methods 263

5.1. Introduction 263

5.2. Planar three-layer 267

5.3. Cylindrical three-layer 276

5.4. Transient fin method 290

5.5. 4L method 295

Chapter 6. Choice of an Adapted Method 305

6.1. Measurement advice 305

6.2. Choice of method 310

Chapter 7. Analogies Between Different Transfers 315

7.1. Diffusion of heat by conduction 315

7.2. Diffusion of water vapor 316

7.3. Flow of a gas in a porous medium 318

7.4. Analogy between the different transfers 320

Chapter 8. Measuring the Transport Properties of Porous Media 323

8.1. Sorption measurement 323

8.2. Water vapor diffusion coefficient 350

8.3. Permeability 375

8.4. Porosity 392

References 401

Index 413

Authors

Yves Jannot LETMA-CNRS, France. Alain Degiovanni University of Lorraine, France; International University of Rabat, Morocco.